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Predictive Modeling and Categorizing Likelihoods of
Quarantine Pest Introduction of Imported Propagative
Commodities from Different Countries

ByeongJoon Kim,1,2 Seung Cheon Hong,1,∗ Daniel Egger,3 Catherine S. Katsar,4

and Robert L. Griffin4

The present study investigates U.S. Department of Agriculture inspection records in the
Agricultural Quarantine Activity System database to estimate the probability of quarantine
pests on propagative plant materials imported from various countries of origin and to de-
velop a methodology ranking the risk of country–commodity combinations based on quar-
antine pest interceptions. Data collected from October 2014 to January 2016 were used for
developing predictive models and validation study. A generalized linear model with Bayesian
inference and a generalized linear mixed effects model were used to compare the inter-
ception rates of quarantine pests on different country–commodity combinations. Prediction
ability of generalized linear mixed effects models was greater than that of generalized lin-
ear models. The estimated pest interception probability and confidence interval for each
country–commodity combination was categorized into one of four compliance levels: “High,”
“Medium,” “Low,” and “Poor/Unacceptable,” Using K-means clustering analysis. This study
presents risk-based categorization for each country–commodity combination based on the
probability of quarantine pest interceptions and the uncertainty in that assessment.
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1. INTRODUCTION

International trade plays a key role in the
introduction of species to new environments (Essl,
Winter, & Pysek, 2012; Levine & D’Antonio, 2003;
Meyerson & Mooney, 2007; Pimentel, Lach, Zuniga,
& Morrison, 2000; Pysek et al., 2010; Seebens et al.,
2015; Tatem, Hay, & Rogers, 2006). About 50,000
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exotic species have been introduced into the United
States, and the number is increasing (Pimentel
et al., 2000; Pimentel, Zuniga, & Morrison, 2005).
Biological invasions cause economically and ecolog-
ically significant damage to agricultural and natural
resources by decreasing native species diversity and
abundance in invaded locations (Pimentel et al.,
2000; Pysek et al., 2012; Simberloff et al., 2013; Vila
et al., 2011). Agricultural quarantine inspections
(AQI) include activities that help reduce pest threat
to U.S. agriculture by providing information that
can be used for risk-based decision making. AQI
data are collected from U.S. ports of entry and
incorporated into a database called Agricultural
Quarantine Activity System (AQAS). McCullough,
Work, Cavey, Liebhold, and Marshall (2006) found
that arthropods account for over 75% of pest
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interceptions when monitoring activities check for
arthropods, plant pathogens, weeds, and mollusks.
They also reported on a large historical interception
record of 725,000 pests collected between 1984 and
2000 and noted that the most interceptions were
associated with travelers’ baggage (62%), followed
by cargo (30%) and propagative material (7%).

Management of quarantine species is applicable
to a variety of invasion processes (Blackburn et al.,
2011; Lodge et al., 2006). In attempting to under-
stand the significance of the initial invasion stage
for effective management, Puth and Post (2005) al-
luded to the importance of inspection program de-
signs at ports of entry. One of the first barriers
to the introduction of quarantine species is the in-
spection program. In this article, the “quarantine
species” is defined as “a plant pest that is not
known to occur or only has limited distribution in
the United States”(Convention, 2007). Interception
rates of quarantine species at ports of entry vary de-
pending on the type of cargo and mode of transporta-
tion. Ornamental plant material such as cut flowers
and plants for planting were found to be major vec-
tors for the introduction of exotic species in Europe
between 1995 and 2004 (Kenis, Rabitsch, Auger-
Rozenberg, & Roques, 2007; Liebhold, Brockerhoff,
Garrett, Parke, & Britton, 2012). The study found
that more than 40% of interceptions were associated
with cut flowers and propagative plants.

Several studies have investigated different
pathways and their historical interception rates of
pests in detection and monitoring programs (Areal
et al., 2008; McCullough et al., 2006; Robinson,
Burgman, & Cannon, 2011; Surkov, Lansink, van
Kooten, & van der Werf, 2008). A pathway for
quarantine inspection is defined as any collection
of inspection items from a population and can vary
depending on commodity, transportation route, or
trading countries/partners (Robinson et al., 2011).
One study investigated potential inspection resource
allocation on high- and low-risk pathways using a
simulation of quarantine inspection in Australia
(Robinson et al., 2011). They showed that reducing
inspection frequency for lower-risk pathways was
an effective strategy for ensuring the risk remained
below an established threshold while maintaining
a full inspection frequency for high-risk pathways.
Similarly, Govindaraju, Bebbington, and Wrathall
(2010) showed the feasibility of a partial inspection
and skip sampling program in New Zealand for im-
ported food materials based on historical inspection
records.

Interception rates are likely to vary depending
on both country of origin and specific pest (Eschen,
Roques, & Santini, 2015; Kenis et al., 2007). The
interception and establishment of quarantine pests
showed significant interactions with the type of im-
ported woody plants in a study by Eschen et al.
(2015). Another study showed that the likelihood of
pest detection varied mainly with the genus of cut
flowers (Areal et al., 2008), implying that risk man-
agement based on plant pest detection efforts may
need to target those plant genera with the highest
probability of carrying quarantine pests.

For the categorization of pathways with different
risk or compliance levels, a specified value of risk is
used as a cutoff. If the interception rate for a pathway
is greater than the cutoff value, it is categorized as
high risk, while if the probability of quarantine pest
interception for a pathway is smaller than the thresh-
old value, it is considered low risk. An appropri-
ate threshold value depends on the resources avail-
able for inspection considered with the number and
type of pests, their probability of establishment, and
the impact. The impact is the resulting damage of
agricultural and environmental resources due to the
introduction of quarantine species. The assessment
of expected impact is a complex process including
many disciplines such as population biology and eco-
nomics (Sakai et al., 2001). The threshold value can
also be affected by available inspection resources.
For example, inspection resources can be expressed
as amount of time spent in inspections, number of
shipments that one inspector can examine per day,
or other relevant units. Due to the lack of data about
the time available for inspection compared to other
tasks, it is difficult to estimate inspection resources. If
resources were unlimited, the threshold value could
be entirely determined by risk. Since inspection re-
sources are limited, it may be determined by iteration
as a way of choosing how to allocate those limited re-
sources (Robinson et al., 2011).

Quarantine pest interception records can be
used to calculate interception rates statistically using
a binomial probability distribution. It is important
to account for the uncertainty of interception rates
when risk categorization of pathways is considered;
however, only a few studies have considered the
uncertainty associated with the interception rate for
risk ranking (Robinson et al., 2011). The U.S. De-
partment of Agriculture (USDA) Animal and Plant
Health Inspection Service (APHIS) established
the Propagative Monitoring and Release Program
(PMRP) to expedite the movement of high-volume
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imports of plant material with low risk for the
introduction of quarantine pests into the United
States. The program used interception records, host
suitability, and other parameters for risk catego-
rization. The risk categorization of the PMRP was
based on a combination of the qualitative (e.g., host
suitability and expert opinion) and quantitative (e.g.,
number of actions and shipments) approaches. The
applicability of predictive statistical models such
as regression or machine learning, however, was
limited due to data inconsistency. We therefore
proposed statistical models for categorizing risk
based on quarantine pest interception rates and their
uncertainty in country–commodity combinations in
order to help build a new framework for quarantine
pest detection and management programs associated
with the inspection of plants for planting. In our
study, we investigated combinations of propagative
plant genera and their countries of origin as potential
pathways of introduction for quarantine pests. We
analyzed agriculture inspection and quarantine
activity records archived at the USDA–APHIS–
Plant Protection and Quarantine (PPQ) AQAS
from October 2014 to September 2015 to determine
interception rates of quarantine pests by country of
origin and commodity and to develop a potential
categorization protocol for implementation in a
risk-based inspection program. The objectives of this
study are (1) to estimate interception probability
parameters of genus-origin combinations for car-
rying quarantine pest species and (2) to develop a
methodology that takes account of uncertainty for
ranking risk of genus-origin import combinations for
their potential of carrying quarantine species.

2. METHODOLOGY

2.1. AQAS Database

The USDA–APHIS–PPQ AQAS records quar-
antine activities performed by the Department of
Homeland Security, Customs and Border Protec-
tion, and APHIS PPQ at U.S. ports of entry. The
AQAS data include multiple variables such as quan-
tities, types, and countries of origins for propaga-
tive plants, fruits, vegetables, cut flowers, lumber,
and other products. We chose to analyze inspection
records of propagative plant materials for our study.
The volume of imports for regulated plant products
for consumption (e.g., fruits, vegetables, cut flowers)
is far greater than for propagative plant material but

Table I. Overview of FY 2015 Inspection Data Sets

Inspection Data

Data collection period October 2014–January 2016
Total inspections 128,653
Total training records 90,057
Total test records 38,596
Countries of commodity origin 93
Commodity genera 1,729
Country–commodity

combinations
1,527

Interceptions 565
Plant quantity 1,415,645,938
Plant inspection stations 14

we chose to analyze inspection records for propaga-
tive material because the importation of plants for
planting is generally considered to be a higher risk
than imports of other regulated plant products and a
history of pest interception data was readily available
for analysis in AQAS. Inspection records of propaga-
tive materials collected from October 1, 2014 to Jan-
uary 31, 2016 in calendar year were obtained from
AQAS. The data were split up into two parts of 70%
and 30% for training and test data sets, which were
used for developing predictive models and validation
study, respectively. The AQAS data are generated
as follows. After inspection is completed, an inspec-
tor assigns a disposition, which indicates the action
taken on a given commodity presented for entry into
or through the United States. If a quarantine pest
is detected, the shipment is assigned a quarantine-
action-related disposition. The assigned disposition
for inspection was recorded by country–commodity
combination and converted to a binary response vari-
able for data analysis. If an inspection event was as-
signed a quarantine-action-related disposition code
for a pest, then it was considered a positive intercep-
tion and assigned a value of 1; otherwise, it was as-
signed a value of 0.

2.2. Data Exploration

Inspection records of importing propagative ma-
terials collected from October 2014 to January 2016
were used for fitting statistical models and valida-
tion study. There were a total 128,653 of inspection
records during the period (Table I). Data were ran-
domly split up into two groups with a 7:3 ratio for
training and test data sets, respectively. The train-
ing data set was used to fit statistical models, while
the test data set was used to evaluate the predictive
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performance of the fitted models. The training
and test data sets had a total of 90,057 and
38,596 inspection records of shipments (i.e., country–
commodity combinations) with 1,729 different gen-
era of propagative plant materials from 93 countries,
respectively. There were a total of 5,497 country–
commodity genus combinations inspected during
the period. Among them, 1,527 country–commodity
combinations with at least greater than 10 shipments
were selected for data analysis. A total of 565 ship-
ments were detected with actionable pests from 14
plant inspection stations (PIS).

2.3. Variables for Statistical Analysis

The dependent and independent variables used
for statistical analysis are summarized in Table II.
The original phytosanitary activity data were ag-
gregated by country–commodity combination. Plant
quantity and number of inspections conducted dur-
ing overtime shift work were used as variables
for each country–commodity combination. Other
categorical variables (i.e., PIS, Month, and Path-
way) were converted to numbers for each country–
commodity combination. For example, if a country–
commodity combination was imported through three
PISs (e.g., Miami, FL, John F. Kennedy International
Airport, NY, and Los Angeles, CA), then the PIS
value for that country–commodity would be 3. Thus,
numeric variables are used to represent diversity
within categorical variables during the import period.
Country–commodity combinations with 10 or more
shipments in the training data were used for fur-
ther statistical testing. This provided 1,398 country–
commodity combinations from the training data set
to use in testing model fit (Table I).

2.4. Statistical Analysis

The relationship of selected inspection-related
variables to the likelihood of carrying a quaran-
tine invasive pest species was determined with a
generalized linear model (GLM) with Bayesian
approach and a generalized linear mixed effects
model (GLMM) using R version 3.2.5. The GLM
and GLMM were used to analyze interception data
and selected variables (Table II) (R Development
Core Team, 2015). Starting with the full models
(GLM1 and GLMM1), the best models were devel-
oped by eliminating variables until all variables in
the model were significant using a likelihood ratio
test and backward elimination (Table III). The four

selected models (two full and two reduced models)
are summarized in Table III. We then compared
the predictive performance and compliance of these
models. Prior to that, logistic regression analysis with
the maximum likelihood method was initially con-
ducted to account for the pattern of quarantine pest
interception using the glm function in R. The initial
statistical modeling attempt did not fit the data due
to issues of convergence validity, collinearity, and/or
perfect separation. Multicollinearity was tested by
computing variance inflation factors (Davis, Hyde,
Bangdiwala, & Nelson, 1986) and the result showed
strong multicollinearities, especially among com-
modity genera and countries (data not presented).
This may be because there are many plant commod-
ity genera and countries (Table I) and interception
is highly dependent on these variables. We also
found that some commodity genera and countries
are multicollinear to each other. Consequently, it is
likely to induce the instable coefficient estimation
(e.g., greater standard errors) in logistic regres-
sion analysis (Zorn, 2005). In our study, we used
Bayesian logistic regression analysis as an alternative
method to resolve these issues and to obtain stable
coefficient estimates (Gelman, Jakulin, Pittau, &
Su, 2008). A weakly informative prior distribution,
the Student t-distribution with one degree of free-
dom (Cauchy), was used as a prior distribution in a
Bayesian logistic regression analysis. The advantage
of this prior distribution is the ability to achieve
stable estimation when there are issues in logistics
regression, as described above (Gelman et al., 2008).

The conditional posterior distribution for β

follows multivariate normal distribution with a mean
of β and a standard deviation σ 2, where the marginal
posterior distribution for σ 2 is a scaled inverse-χ2.
The coefficients β i and the unknown scale σ i have
the following distribution (Gelman et al., 2008):

βi∼N
(
μi , s2

i
)

and {σ 2
i ∼ Inv-χ2 (

vi , si
2) ,

where coefficients β i follow t-prior distribution
with centers μi, and scales si with ν i are degrees of
freedom.

The posterior distribution was used to generate
coefficients based on a Monte Carlo approxima-
tion with 1,000 iterations. The Bayesian approach
with a Student-t prior distribution provided more
robust inferences in logistic regression analysis
than other prior distributions (Gelman et al., 2008;
Lange, Roderick, & Jeremy, 1989). Bayesian logistic
regression was conducted with the bayesglm func-
tion in the “arm” package in R. Akaike information
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Table II. List of Variables Used for Data Analysis

Variable Variable Type and Description

Action Response. Total number of quarantine pests for country–commodity combination; used as
positive response for interceptions

Shipment Response. Total number of shipments for country–commodity combination; used as response
variable for total trials for each combination

Country Categorical. Country of commodity origin
Commodity Categorical. Genus of propagative plants
Plant quantity Numerical. Total number of imported propagative plants
Overtime Numerical. Total number of inspections conducted during nonregular time
PIS Numerical. Number of unique plant inspection stations for each country–commodity pair (range:

1–14)
Month Numerical. Number of months in which inspections occurred for each country–commodity pair

(range: 1–12, January–December)
Pathway Numerical. Number of unique pathways for each country–commodity pair (range: 1–7; e.g., air

baggage, air cargo, land border baggage, land border cargo, mail/express mail, and maritime
cargo)

Table III. List of Statistical Models Used

Modelsa Variablesb Used

GLM1 Country of origin + Commodity + log(Plant quantity) + log(Overtime) + PIS + Month + Pathway
GLM2 Country of origin + Commodity + log(Plant quantity) + log(Overtime) + Month + Pathway
GLMM1 log(Plant quantity) + log(Overtime) + PIS + Month + Pathway + Country of origin/Commodityc

GLMM2 log(Plant quantity) + log(Overtime) + Month + Pathway + Country of origin/Commodityc

aModel estimation methods for GLM and GLMM: For GLM, the bayesglm function using arm package was used; for GLMM, the glmer
function using lme4 package in R was used.
bCountry of origin and commodity are categorical variables. Plant quantity is the total number of plants for country–commodity combi-
nations imported during FY 2015. Overtime is the number of country–commodity combinations that came through at overtime hour. PIS
(plant inspection station) represents the number of different stations; month, the number of months; and pathway, the number of different
pathways for each country–commodity combination. For GLMMs, logarithms of plant quantity and overtime variables were used.
cRandom effects: Commodity nested within country of origin.

criterion (AIC) values revealed that the Bayesian
approach improved the model fit over that obtained
from the maximum likelihood method. AIC values
for the Bayesian approach were 1,200s, while the
values of standard logistics regression were 18,000
and 14,000 for GLM1 and GLM2, respectively. As a
result, the convergence issue was resolved (Gelman
et al., 2008). For these reasons, further analysis was
conducted using results from the GLMs with the
Bayesian approach.

The GLMM1 and 2 were fitted with the glmer
function in the “lme4” package. In GLMM, the fixed
effects were plant quantity, overtime, PIS, month,
and pathway. The random effect was commodity
genus nested within country, which accounts for
the varying probabilities of carrying quarantine pest
species among different country–commodity combi-
nations and for overdispersion (Table III).

2.5. Estimation of Probability and Prediction
Interval for Country–Commodity
Combinations Carrying Quarantine Species

For both GLMs and GLMMs, prediction in-
tervals were obtained using simulated coefficients
based on selected models, as shown in Table III.
Each model was simulated 1,000 times with a
Monte Carlo approximation to generate coefficients,
followed by multivariate normal distribution with
means and standard deviation. The lower 2.5th and
upper 97.5th percentiles of simulated coefficients
were chosen and implemented into each model
to calculate the probability of carrying quarantine-
significant pest species for each country–commodity
combination. Three levels (median, minimum, and
maximum) of probabilities for country–commodity
combinations were used for clustering analysis
later.
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2.6. Model Evaluation and Comparison

The models were evaluated using the randomly
selected 30% data (i.e., test data set) from the whole
data set. In the validation test, predicted probabilities
of carrying quarantine pests for country–commodity
combinations were compared with observed inter-
ception rates using quantitative error index statistics
(Legates & McCabe, 1999; Moriasi et al., 2007; Will-
mott, 1981; Willmott et al., 1985; Willmott, Robeson,
& Matsuura, 2012). Moriasi et al. (2007) recom-
mended a combination of multiple quantitative
statistics, including dimensionless techniques and
error index statistics, for model evaluation. We com-
pared the performance of four different models using
modified index of agreement (md), as well as six er-
ror index statistics: Nash–Sutcliffe efficiency (NSE),
mean absolute error (MAE), mean squared error
(MSE), root MSE (RMSE), percent bias (PBIAS),
and RMSE-observations standard deviation ratio
(RSR) (Legates & McCabe, 1999; Moriasi et al.,
2007; Nash & Sutcliffe, 1970). The md measures
the degree of model prediction error and its value
varies between 0 and 1, indicating no agreement
and a perfect match, respectively. NSE ranges from
negative infinite to 1 and indicates how well simu-
lated and observed action rates fit the 1:1 line. The
closer to 1 the more accurate the model is. A value
of MAE, MSE, or RMSE provides a deviation of the
model prediction error. A smaller value indicates
better model performance. PBIAS is a measure of
the overall tendency of simulated values. The lower
the value is the greater the accuracy. Positive and
negative values indicate over- and underestimation
biases, respectively. RSR varies from 0 to positive
value. A lower value of RSR indicates lower RMSE
or residual variation, implying better simulation
performance. Equations are the following:

md = 1 −
∑n

i=1 |Yobs
i − Ysim

i | j

∑n
i=1 (|Ysim

i − Ymean| + |Yobs
i − Ymean|) j ,

NSE = 1 −
∑n

i=1 (Ysim
i − Yobs

i )2

∑n
i=1 (Yobs

i − Ymean)2 ,

MAE = 1
N

n∑
i=1

|Yobs
i − Ysim

i |,

MSE = 1
N

n∑
i=1

(Yobs
i − Ysim

i )2,

RMSE =
√√√√ 1

N

n∑
i=1

(Yobs
i − Ysim

i )2
,

PBIAS = 100
∑n

i=1(Ysim
i − Yobs

i )∑n
i=1(Yobs

i )
,

RSR =
√∑n

i=1 (Yobs
i − Ysim

i )2

√∑n
i=1 (Yobs

i − Ymean)2
.

2.7. Categorization of Country–Commodity
Combinations by Their Uncertainty

Country–commodity combinations were cat-
egorized into High, Medium, Low, and Poor/
Unacceptable compliance groups based on the sim-
ulated probabilities described above. Categorization
involved two steps: (1) splitting country–commodity
combination groups with high or low variance of
estimated probabilities of carrying quarantine pests
and (2) categorizing combinations in each group into
compliance levels using predetermined thresholds.
To identify country–commodity pairs with highly
reliable (i.e., low variance) probabilities of carrying
quarantine pests, the minimum, maximum, and their
absolute difference were used. Because the estimated
probabilities provide 95% confidence intervals for
likelihood of carrying quarantine-significant pest
species for each country–commodity combination,
the differences between minimum and maximum
values represent a relative magnitude of uncertainty
for the estimated probability. If the difference is
smaller, the median probability has a narrower
range, suggesting relatively high accuracy of the
median probability. The absolute differences were
used in combination with minimum and maximum
probabilities to cluster 1,398 country–commodity
combinations into “High” and “Low” variation
groups. The purpose of this clustering was to obtain
a set of country–commodity combinations with
relatively narrow simulated probability distributions
in order to decrease the uncertainty of estimated
probabilities of carrying quarantine-significant pest
species. The “Low” variation group represents
country–commodity combinations with relatively
high accuracy for estimation of the probability of car-
rying quarantine pests, whereas the “High” variation
group contains those with a wider range of likeli-
hoods. To cluster country–commodity combinations
into “High” and “Low” variation groups, K-means
clustering (K-means function in R) was conducted
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Table IV. Compliance-Level Thresholds for
Country–Commodity Risk Rating Based on Their Estimated

Probabilities and Confidence Intervals

Uncertainty
Group

Compliance
Categorization

Predicted Probability
(p) of Carrying

Quarantine Pests

Low
variation

High p � 0.003

Medium 0.003 < p � 0.03
Low 0.03 < p � 0.10

Poor/Unacceptable p > 0.10
High

variation
Medium p � 0.03

Low 0.03 < p � 0.10
Poor/Unacceptable p > 0.10

(Hartigan & Wong, 1979). The number of clusters
was determined by the minimum cluster number
above which total variance explained by clustering is
greater than or equal to 95%. The “High” and “Low”
variation groups were determined by investigating
distributions of minimum, maximum, and their
difference based on selected clusters. The cluster
group with the smallest distribution of probabilities
was considered a “Low” variation group and the rest
were considered “High” variation groups.

2.8. Categorization of Country–Commodity
Combinations Based on Compliance Using
Predetermined Thresholds

The country–commodity combinations in “Low”
or “High” variation groups were further catego-
rized into their compliances based on predeter-
mined thresholds (Table IV). For the “Low” varia-
tion group, compliance groups were divided into four
groups based on the probability (P) of carrying quar-
antine pests and threshold ranges (personal commu-
nication with APHIS): “High”: p � 0.003, “Medium”:
0.003 < p � 0.03, “Low”: 0.03 < p � 0.10, and “Poor”:
p > 0.10. For the “High” variation group, country–
commodity combinations were categorized as fol-
lows: “Medium”: p � 0.03, “Low”: 0.03 < p � 0.10,
and “Poor”: p > 0.10. No country–commodity com-
binations in the “High” variation group were cate-
gorized as “High” compliance because of the high
uncertainty of the estimated probability of carrying
quarantine pests.

3. RESULTS

3.1. Exploratory Data Analysis

During FY 2015, about 50% of shipments
into the United States came from Costa Rica,
Guatemala, and Mexico (Supporting Information
Table SI). About 50% of shipments with detections
of quarantine-significant pest species also came from
these countries. More than 50% of the propaga-
tive plant material by volume was imported from
Guatemala, Costa Rica, and El Salvador, in order of
volume. Approximately 780 million individual prop-
agative plants were imported from these three coun-
tries in about 44,000 shipments.

Petunia was the most frequently imported plant
genus by number of shipments (2,200 shipments in
FY 2015), followed by Calibrachoa, Euphorbia, Ver-
bena, and Salvia (Supporting Information Table SII).
By volume, the greatest amount of Calibrachoa was
imported, followed by Petunia, Pelargonium, and Im-
patiens (some genera are not shown in the tables
given in Supporting Information). The top five plant
genera for carrying quarantine pests were Tillandsia,
Dracaena, Codiaeum, Hedera, and Salvia.

By country–commodity combination, Dracaena
from Costa Rica was the most frequently imported
(Supporting Information Table SIII). A total of 881
out of 99,584 shipments imported during FY 2015
were Dracaena from Costa Rica. The second most
frequent combination was Petunia (Israel), followed
by Phalaenopsis (Taiwan), Tillandsia (Guatemala),
and Calibrachoa (Israel). Tillandsia (Guatemala)
had the greatest number of pest interceptions, fol-
lowed by Dracaena (Costa Rica), Codiaeum (Costa
Rica), Hedera (Guatemala), and Schefflera (Costa
Rica). By volume of plants, Hedera (Guatemala),
Pelargonium (Mexico), Calibrachoa (El Salvador),
Impatiens (Guatemala), and Euphorbia (El Sal-
vador) were the top five imported.

3.2. Estimation of Probability and Prediction
Interval for Country–Commodity
Combinations Carrying Exotic Species

The estimated probabilities of 1,398 country–
commodity combinations carrying quarantine-
significant pest species were plotted with 95% confi-
dence intervals (Fig. 1). The x-axes of all figures are
ordered by observed quarantine action disposition
rates of country–commodity combinations, which
allows for comparison of the pattern of predicted
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Fig. 1. Quarantine action disposition rates of observation (green dots) and simulation (salmon dots) with credible intervals (vertical bars)
of country–commodity combinations from different statistical models: GLM1 (top left), GLM2 (bottom left), GLMM1 (top right), GLMM2
(bottom right).

action rates among the four figures. The result
shows that predicted interception rates from the four
models are highly correlated with each other and
also with observed action rates (Fig. 1; Supporting
Information Table SVII). The range of correlations
is from 0.92 to 0.99 (Supporting Information Table
SVII). The correlation is slightly greater between
models with the same estimation methods (i.e.,
GLM1 vs. GLM2 or GLMM1 vs. GLMM2 compared
to GLMs vs. GLMMs). Although predicted action
rates are highly correlated to each other regardless
of models, confidence intervals are dramatically
different between GLMs and GLMMs (Fig. 1). In
GLMMs, random effects of country–commodity
combinations have five times greater variance than
residuals, whereas zero variance for country is
observed in either model (Supporting Information
Table SIV). This result suggests that interception
rates of quarantine pests on commodity genera vary
depending on their countries of origin. Coefficients
with 95% confidence intervals for GLMMs and
posterior distributions of coefficients for selected

predictor variables in GLMs are shown in Supporting
Information Fig. S1.

3.3. Model Evaluation and Comparison

The md indicates that predicted probabilities
from all four models have relatively good agreement
with observed interception rates in the training and
the test data sets (Table V). The overall range of the
md is 0.67 to 0.77. When compared with the observed
quarantine pest interception rate in the test data
set, however, the agreements dramatically dropped
to between 0.50 and 0.52. In the training data set,
the NSE values indicate that predicted probability is
fairly matched, with observed value into a 1:1 line,
while NSE values for the test data set are below zero,
indicating that the observed mean interception rate
is a better predictor. The MAE, MSE, and RMSE
suggest that overall errors between predicted and ob-
served values are very small in both the training and
the test data sets. PBIAS for training data shows
that the predicted probabilities of GLMMs were
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Table V. Summary of Goodness-of-Fit Tests Between Predicted
Probability and Observed Rate in Training and Test Data Sets

Predicted Probability Versus Observed Value with Training Data

GLM1 GLM2 GLMM1 GLMM2

md 0.67 0.67 0.77 0.77
NSE 0.24 0.12 0.47 0.47
MAE 0.00 0.00 0.00 0.00
MSE 0.00 0.00 0.00 0.00
RMSE 0.01 0.01 0.01 0.01
PBIAS (%) 4.49 7.56 40.97 41.19
RSR 0.81 0.87 0.68 0.68

Predicted Probability Versus Observed Value with Test Data

GLM1 GLM2 GLMM1 GLMM2

md 0.50 0.50 0.52 0.52
NSE −2.19 −2.27 −2.90 −2.86
MAE 0.01 0.01 0.01 0.01
MSE 0.00 0.00 0.00 0.00
RMSE 0.03 0.03 0.03 0.03
PBIAS (%) −9.68 −3.94 30.26 30.09
RSR 1.67 1.68 1.83 1.82

md: modified index of agreement; NSE: Nash–Sutcliffe efficiency;
MAE: mean absolute error; MSE: mean squared error; RMSE:
root MSE; PBIAS: percent bias; RSR: ratio of RMSE to the stan-
dard deviation of the observation.

overestimated (i.e., positive values) compared to
Bayesian GLMs. Among the four models, PBIAS
values for GLMs are closer to zero than those in
GLMMs for the training data. RSR values, ratios of
RMSE to the standard deviation of observation, in-
dicate that predicted values from GLMMs are closer
to observed values in the training data set while sim-
ulated probabilities from GLMs were better than
those from GLMMs in the test data set.

3.4. Categorization of Country–Commodity
Combinations

The K-means cluster analysis shows that five
clusters of country–commodity combinations ac-
count for at least 95% variance of estimated quar-
antine pest interception probabilities and intervals,
regardless of model used (Supporting Information
Table SV). Among the five clusters of country–
commodity combinations, those in the “rank 1”
group had action disposition rates with the short-
est intervals (Supporting Information Fig. S2), im-
plying lower uncertainty than the other clusters.
Thus, country–commodity combinations in the rank
1 group were considered to be a “Low” variation

group in terms of quarantine action disposition
rate estimates, while the rest of the combinations
were grouped as “High” variation because combina-
tions in those groups have relatively wider intervals
(Fig. 2). This suggests that estimated probabilities in
the “Low” variation/uncertainty group are more ac-
curate than those in the “High” variation/uncertainty
group. When GLMM was used, a greater number
of combinations were categorized as “Low” vari-
ance than when GLM was used (Table VI). With
GLMs, 662 and 697 country–commodity combina-
tions were grouped as “Low” variance, whereas 1,002
and 933 combinations belonged to “Low” when using
GLMMs.

Using the predetermined thresholds (Table IV)
of probabilities of carrying quarantine-significant
pest species, country–commodity combinations were
also categorized into four compliance levels: “High,”
“Medium,” “Low,” and “Poor/Unacceptable”
(Table VII, Fig. 3). Country–commodity combi-
nations at the “High” compliance level were only
possible in the “Low” uncertainty group (Table VII).
In total, 467 and 480 country–commodity combi-
nations were categorized as “High” compliance
for GLM1 and GLM2, respectively, while 991 and
925 combinations were classified into the “High”
compliance group for GLMM1 and GLMM2.
Country–commodity combinations at a “High”
compliance level are regarded as having a lower
probability of carrying quarantine-significant pest
species, which suggests that the trading partners
for these combinations (i.e., the countries in the
country–commodity pairs) have cleaner commodi-
ties than those with lower compliance levels. For
the purpose of enhancing cost-effective inspection,
the sampling intensity for country–commodity com-
binations in the “High” compliance group may be
reduced below the current sampling intensity. The
numbers of “High” compliance country–commodity
combinations from GLMMs were approximately
twice as high as those from GLMs, while the numbers
of “Medium” or “Low” compliance combinations
were greater in GLMs than in GLMMs. The num-
ber of combinations in the “Medium” or “Low”
compliance groups were 926, 912, 400, and 468 for
GLM1, GLM2, GLMM1, and GLMM2, respectively.
The numbers of country–commodity combina-
tions in “Poor/Unacceptable” compliance groups
were between five and seven, regardless of the
model used (Table VII). A greater number of total
country–commodity combinations were observed
from GLMs than from GLMMs.
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Fig. 2. Observed (green dots) and predicted (salmon dots) quarantine action disposition rates of country–commodity combinations by Low
and High variation of four statistical models (clockwise from top left: GLM1, GLMM1, GLMM2, GLM2).

Table VI. Frequency of Country–Commodity Combinations in Clustering and Risk Rating Groups Resulting from Different Statistical
Model Fittings

Clustera GLM1 GLM 2 GLMM1 GLMM2 Variance or Uncertainty Level Further Rating

1 662 697 1,002 933 Low Usedb

2 269 248 235 292 High Not used
3 178 179 65 68 High Not used
4 163 151 54 58 High Not used
5 126 123 42 47 High Not used
Total OCs �10 shipments 1,398 1,398 1,398 1,398
Not used 3,603 3,603 3,603 3,603
Total 5,001 5,001 5,001 5,001

aClusters in order of increasing interval variance.
bOnly country-commodities with low uncertainty for action rates were used for further rating.

4. DISCUSSION

In this study, we categorized country–commodity
combinations into different compliance levels based
on simulated interception rates of quarantine species
and predetermined thresholds. We also compared
the categorization results among models. To do this,
we used two steps. First, country–commodity com-
binations were separated into small and large vari-
ance groups based on the confidence intervals of the
estimated probabilities of carrying quarantine pest
species. Second, each group was further partitioned

into compliance levels (High, Medium, Low, and
Poor/Unacceptable) using thresholds (Table VII).

We found that the use of statistically estimated
probabilities of interception and their confidence
intervals is a feasible and promising approach for
rating compliance of country–commodity combina-
tions. The predictive performance of models with
the test data set showed that GLMMs have slightly
better predictive power than GLMs (Table V) based
on md. Validation with an entirely new data set
not used for modeling is essential for measuring
predictive performance. Since the ultimate goal of



Quarantine Pest Interceptions 11

Table VII. Compliance Levels of Country–Commodity Combinations with Uncertainty Levels from Different Statistical Models

Variance or Uncertainty Level Compliance Level GLM1 GLM2 GLMM1 GLMM2

Low variance
High 467 (33.4%) 480 (34.3%) 991 (70.9%) 925 (66.2%)

Medium 193 (13.8%) 215 (15.4%) 11 (0.8%) 8 (0.6%)
Low 2 (0.1%) 2 (0.1%) 0 (0%) 0 (0%)

Poor/Unacceptable 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Total 662 (47.4%) 697 (49.9%) 1,002 (71.7%) 933 (66.7%)

High variance Medium 701 (50.1%) 667 (47.7%) 360 (25.8%) 426 (30.5%)
Low 30 (2.1%) 28 (2%) 29 (2.1%) 34 (2.4%)

Poor/Unacceptable 5 (0.4%) 6 (0.4%) 7 (0.5%) 5 (0.4%)
Total 736 (52.6%) 701 (50.1%) 396 (28.3%) 465 (33.3%)

Grand total 1,398

Fig. 3. Quarantine action disposition rates of simulation (salmon dots) and observation (green dots) by grouping with compliance levels
(within Low variance) and High variance based on FY 2015 values: GLM1 (top left), GLM2 (top right), GLMM1 (bottom left), and GLMM2
(bottom right).

the study is to predict interception probability for
future imported country–commodity combinations,
the predictive performance with a new data set (i.e.,
test data) provides a more realistic assessment of the
best model choice(s) in our study (Shmueli, 2010).
The predictive performance of all models was much
better with the training data set than with the test
data set. Indices for goodness-of-fit tests showed that
the observed interception rates corresponded rela-
tively well to the models with the training data, while
the indices dropped dramatically with test data (e.g.,

modified indices of agreement in Table V), implying
overfitting of the training data, especially in GLMMs.
This result indicates that models used in our study
might exhibit patterns specific to the training data
set rather than true properties of the unknown
function. In other words, the test data set does not
demonstrate the pattern found in the training data
set (James, Witten, Hastie, & Tibshirani, 2013). It
may imply that more variables should be explored to
account for variability. The split based on inspection
time was necessary because the goal of the modeling
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is to predict interception probabilities of newly im-
ported commodities in future. Additional validation
studies with training and test data sets selected
in various ways have shown that results can differ
depending on split methods (Supporting Information
Table SVI). When the test data set had a similar
amount of data to the training set, the predictive
performance with the test data had more predic-
tive power. Regardless of data split method, the
predictive power was always greater in GLMMs
than in GLMs. The different results among various
validation studies may be due to both data split
method (random vs. chronological) and amount
of data (training vs. test) (Jamieson et al., 2013;
Shmueli, 2010). In our study, the predictive power
tends to be better when training and test data sets
have similar amounts of data and are split by random
selection (Validation study 2 in Supporting Informa-
tion Table SVI). In this article, the result from the
initial validation study was presented since it was our
first choice and it may better represent the reality
of the inspection situation in predicting compliance
levels of individual imported consignments.

Calculated compliance levels for country–
commodity pairs were also influenced by the type of
statistical models used (Table VII). In general, more
country–commodity combinations were categorized
into the “High” compliance group when using
GLMMs than when using GLMs. A minimum of
33% and a maximum of 71% of commodities were
classified as being in the “High” compliance group.
This result indicates that a country–commodity
combination can be categorized into one compliance
level (e.g., “High” compliance) in one statistical
model and into another compliance level (e.g.,
“Medium”) in another model. Although an in-depth
discussion of statistical algorithms is beyond the
scope of this study, inconsistency of grouping among
models may be the result of different algorithms
of parameter estimation and variable selection.
Since the choice of model may significantly affect
the compliance level of country–commodity com-
binations for quarantine pests, the choice(s) of
model for applying results to the real world should
be made cautiously, with careful consideration of
operational aspects such as the operation system,
the availability of inspection resources, and the
policies in place. For example, if available inspection
resources are limited, then models with relatively
greater numbers of “High” compliance levels (e.g.,
GLMM1 or GLMM2) can be used for developing
an inspection program so that more inspection effort

can be focused on those country–commodity pairs
with high-risk levels (i.e., “Medium” and/or “Low”
compliance). Depending on the availability and ca-
pacity of inspection resources, categorization results
from multiple models can be selected to efficiently
accommodate inspection limitations. Instead of
using the result from one model, the use of combined
categorization results from four models can be used
to prioritize the allocation of inspection resources
(Shmueli, 2010).

The separation of country–commodity combina-
tions into “Low” and “High” variability groups may
be a useful step before compliance categorization
with thresholds because our method only allowed
combinations with “Low” variation to obtain the
“High” compliance country–commodity categoriza-
tion (Fig. 3). Confidence intervals in the “High”
compliance group were smaller than those in other
compliance groups. This means that the estimated
quarantine pest probabilities in the “High” com-
pliance group have relatively narrower interval
ranges than other clustered groups, implying that
the estimates are more accurate than those in
other groups. In the study, the “High” compliance
group (i.e., probability of carrying quarantine pest
species � 0.003) was selected only from the “Low”
variation commodity group (Figs. 2 and 3). The
purpose of this limitation was to obtain country–
commodity combinations with a relatively high
degree of certainty that they have a low probabil-
ity of carrying quarantine-significant pest species.
This is very important for the operation aspects
of inspection program implementation. When al-
locating inspection effort based on compliance
levels, reduced inspection resources will be assigned
to the “High” compliance group, so the chance of
passing quarantine-significant pest species may be
higher unless the categorization is accurate. Al-
though there were differences depending on which
model was used, the country–commodity pairs in the
upper limit of intervals in the “Low” variation group
had at most about a 10% probability of carrying
exotic species. GLMs have greater upper limits than
GLMMs in our results (data not shown). Like the
categorization of compliance level, the classification
results of the high and low variation groups varied
depending on the model estimation method and
variable selection (Table VII; Fig. 2). Thus, careful
use of statistical modeling and variables is required.
Although the inconsistency among models may be
inevitable, more data collection and careful choice of
models and variables may reduce it to some extent.
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The K-means function in R has several algorithms
as options (the default is “Hartigan–Wong”), which
vary in optimization methods and data types and Eu-
clidean distance is used to calculate sum of squared
deviations from data points and a centroid (Forgy,
1965; Hartigan & Wong, 1979; Lloyd, 1982; Mac-
Queen, 1967; Morissette & Chartier, 2013; Slonim,
Aharoni, & Crammer, 2013). Since results from dif-
ferent algorithms were almost identical in our study
(data not shown), we present the clustering for vari-
ation from the default “Hartigan–Wong” algorithm
(Fig. 2). Although the effect of clustering algorithms
on grouping variations was negligible in this study,
confirmation is still recommended for future studies.

Selection of threshold values for compliance
levels may be one of the most important and
complicated steps in designing a compliance catego-
rization process. In this study, thresholds were de-
termined by a USDA-APHIS expert panel review
of cluster analysis results in order to reflect the re-
alities of the inspection system. To support deci-
sion making in the selection of optimal thresholds by
APHIS expert panel review, the simulation study of
cluster analysis generated the best split of country–
commodity based on interception rate. Cluster cut-
off values were used as thresholds for placing the
combinations into compliance categories. Thus, the
compliance levels actually indicate probabilities of
carrying quarantine pest species that are statistically
different among compliance groups in our study. We
considered the input of the expert panel to modify
the threshold values so that they were more closely
aligned with actual inspection systems. It may be
more reasonable to consider operational and policy
aspects in addition to analytical calculations when de-
termining compliance-level thresholds. For example,
limited inspection resources can be allocated differ-
ently for different country–commodity pairs depend-
ing on compliance levels. Such resource limitations
should be reflected in setting threshold values. Fur-
ther study is required to determine optimum thresh-
old values for categorization of compliance level.

Categorization of imported commodities based
on their probabilities of carrying exotic species is im-
portant for improving inspection programs. Such cat-
egorizations can be applied to the allocation of in-
spection resources; for example, by differentiating
sampling efforts depending on categorical compli-
ance levels (Robinson et al., 2011). Our study shows
how interception data for propagative plant mate-
rials can be used in statistical models to generate
estimated probabilities of quarantine pest presence,

along with confidence intervals, all of which can be
used to categorize country–commodity combinations
into compliance levels. Although more research on
the operational aspects of categorization is needed,
this approach for categorizing commodities based on
estimated probability and the corresponding uncer-
tainty is a realistic method for improving inspection
programs by allocating resources based on the likeli-
hood of intercepting quarantine-significant species.

5. CONCLUSION

Our study aims at developing and comparing
statistical models and categorizing compliance levels
of country–commodity combinations based on pre-
dicted interception rates. GLM and GLMM were
used to estimate interception rates of country–
commodity combinations and their uncertainty (i.e.,
95% confidence ranges of predicted interception
rates). Model validation with a new test data set was
used to assess predictive performance of statistical
modeling. In this particular study, GLMMs slightly
outperformed GLMs when compared on predic-
tive performance, although their predictabilities with
the new “future” test data set were lower than those
with the training data. This implies that there may be
overfitting in the statistical modeling or that the test
data set was generically different from the training
data set. Additional studies with more data are nec-
essary to confirm the trend. Predicted interception
rates and their confidence intervals were highly in-
fluenced by the statistical models used. Thus, careful
consideration is required to apply the information to
the development of inspection programs with differ-
ent monitoring intensities based on compliance levels
of country–commodity combinations. Nonetheless,
the results from our study with empirical inspec-
tion data will help to provide a guideline for assess-
ing risk of invasive quarantine species introductions
and for developing inspection programs for country–
commodity combinations and other possible pest in-
troduction pathways.
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