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When Does Poor Governance Presage Biosecurity Risk?

Stephen E. Lane ,1,∗ Anthony D. Arthur,2 Christina Aston,2 Sam Zhao,2

and Andrew P. Robinson2

Border inspection, and the challenge of deciding which of the tens of millions of consignments
that arrive should be inspected, is a perennial problem for regulatory authorities. The objec-
tive of these inspections is to minimize the risk of contraband entering the country. As an
example, for regulatory authorities in charge of biosecurity material, consignments of goods
are classified before arrival according to their economic tariff number. This classification, per-
haps along with other information, is used as a screening step to determine whether further
biosecurity intervention, such as inspection, is necessary. Other information associated with
consignments includes details such as the country of origin, supplier, and importer, for exam-
ple. The choice of which consignments to inspect has typically been informed by historical
records of intercepted material. Fortunately for regulators, interception is a rare event; how-
ever, this sparsity undermines the utility of historical records for deciding which containers
to inspect. In this article, we report on an analysis that uses more detailed information to
inform inspection. Using quarantine biosecurity as a case study, we create statistical profiles
using generalized linear mixed models and compare different model specifications with his-
torical information alone, demonstrating the utility of a statistical modeling approach. We
also demonstrate some graphical model summaries that provide managers with insight into
pathway governance.
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1. INTRODUCTION

Efficient and effective border biosecurity strate-
gies are essential for protecting ecosystems and
economies from invasive pests. The annual cost of
invasive species generally is estimated to be over
USD$200bn(1) in the United States, and at least
USD$4bn in Australia.(2) In Australia, the Depart-
ment of Agriculture and Water Resources (the de-
partment) is both the regulatory authority and the
inspectorate for biosecurity protection, carrying out
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both preborder and border intervention on a range
of imported goods, based on the risk profile of the
goods and international agreements. The objective of
these interventions is to minimize the risk of biosecu-
rity risk material (BRM) entering the country.

Here, we focus on border inspection and the
challenge of deciding which of the tens of millions
of consignments that arrive should be inspected. Be-
fore arrival, consignments of goods are classified ac-
cording to their economic tariff number,(3) and this
classification is used, with other information, as a
screening step to determine whether further biose-
curity intervention, such as inspection, is necessary.
Other information associated with consignments in-
cludes details such as the country of origin, supplier,
and importer, for example.

Border inspection for quarantine biosecurity is
carried out for a number of reasons, namely, (i) to
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verify the effectiveness of mandated prearrival treat-
ments; (ii) to detect and intercept BRM; (iii) to pro-
vide information about the intrinsic contamination
rate of the activity; and (iv) to deter potential male-
factors. As noted above, tens of millions of con-
signments arrive every year, so the challenge is to
determine which should be inspected.

We define a pathway as a collection of activities
that culminates in the arrival to Australia of a set of
alike consignments. The pathways are hierarchical,
so we may consider a pathway of all consignments of
a commodity, or all consignments of that commodity
for a specific country, or even for a specific supplier.
For example, the plant product pathway, which is the
focus of this article, includes goods such as kiwi fruit
and cashew nuts, which can themselves be considered
pathways. Statistically, pathways can be thought of as
processes.

Pathways can be classified as either high risk or a
low risk, based on the probability that a consignment
contains BRM, called the approach rate. For exam-
ple, in Australia, kiwi fruit is a high-risk plant product
pathway, with an approach rate of 55.8%, whereas
cashew nuts is a low-risk plant product pathway, with
an approach rate of 1.3%. Importantly, the degree of
severity of the detected BRM in cashews has been
identified as very low. The risk severity classifica-
tion is important because the department may apply
different interventions to low-risk than to high-risk
pathways, as discussed. The identification of path-
ways as high or low risk is called profiling, and is an
essential step in the efficient management of biosecu-
rity intervention.

Traditionally, profiling has been applied by us-
ing records of interception of regulated pests on the
pathway. This application is based on the assump-
tion that future biosecurity compliance can be pre-
dicted by past biosecurity compliance, at least for
some periods in the past and the future. However,
interception of regulated pests is a rare event, which
is good news from the point of view of biosecurity
protection, but makes profiling more difficult, espe-
cially in sparse pathways, because reliable estimates
of pathway risk are hard to obtain. This observation
motivates the following question: whether future
biosecurity compliance can be predicted by other
characteristics as well as by past biosecurity compli-
ance.

Historically, all consignments of imported plant
product pathways were subjected to mandatory in-
spection. As part of a comprehensive review of
Australia’s biosecurity system,(4) the authors recom-

mended establishing a science-based system for man-
aging biosecurity issues, noting that zero risk is both
unattainable and undesirable. With the full inspec-
tion strategy, pathways that have lower approach
rate cost considerably more inspection effort to in-
tercept BRM. For example, 4,623 consignments were
inspected in the cashew pathway over four years, of
which BRM was detected in 59, so the average num-
ber of inspections per detection (IPD) was about 78,
compared to about 2 for the kiwi fruit pathway.

We now introduce the case study that motivates
the research. The inspection work flow of imported
plant product pathways comprises three components,
namely, suppliers that export plant products, im-
porters that import the products from suppliers, and
border inspections that attempt to detect as much as
possible BRM. Inspections at the border can be strat-
ified by supplier or importer, that is, unique inspec-
tion regimes may be applied to individual importers
or suppliers.

The department currently uses the continu-
ous sampling plan (CSP) algorithm, specifically,
CSP-3, to manage the biosecurity risk of low-risk
pathways.(5,6) The CSP family of algorithms allocates
intervention effort within pathways according to re-
cent inspection history. The department has imple-
mented CSP-3 for the inspection of a range of low-
risk pathways, including dried apricots, green coffee
beans, raisins, cashews, and some nuts. This partic-
ular approach to profiling has been shown to result
in reductions of both leakage (how much BRM is
missed in the inspection process) and IPD relative to
random sampling plans.(7–9)

A wrinkle in the application of the CSP algo-
rithm is that although it is implicit that the analysis
of inspection history would take account of only the
kinds of contamination that are of specific regulatory
interest, in fact, any aspect of the inspection history
can be used as an indicator of future risk. That
is, although the department may be specifically
concerned about intercepting regulated pests, the
inspection history provides a much richer view of the
pathway because it includes information about other
incidents, such as the interception of nonregulated
pests, failures of documentation, and so on, which
may arguably and testably be related to the chances
of failure types that are of regulatory concern. The
question that motivated this study is: What data
provide the most useful information about the path-
way — the relatively sparse history of interception
of regulated pests, or the more complete picture of
the relative performance on the pathway, or some
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combination? Furthermore, can insight into the
future performance in a given pathway be provided
by information about historical performance in
other, possibly related pathways?

This article reports an analysis of the use of aux-
iliary information to try to improve profiling. The
objective is to distinguish high-risk and low-risk path-
ways, where risk refers to the interception rate of reg-
ulated pests, based on a range of characteristics of
the pathway, including the interception rate of reg-
ulated pests, nonregulated pests, administrative fail-
ures, and supplier and tariff information. We aim to
form a picture of the governance of the pathway and
use that picture as a basis for assessing the relative
biosecurity risk. The balance of the article is orga-
nized as follows. In the next section we introduce the
data set and the models used to test our conjectures.
We then present the results and a discussion and
conclusion.

2. MATERIALS AND METHODS

We used a number of analytical approaches to
assess the conjecture. First, we tested the association
between nonregulated pest and administrative (more
frequent, low-severity) failures and regulated pest
inspection (less frequent, high-severity) failures. If
such an association was found, then we reasoned that
historical governance-related variables may be used
to predict future high-severity biosecurity failures.
Second, we used historical failure rates to create pro-
files, and investigated performance using receiver op-
erating characteristic (ROC) curves. Finally, we con-
structed statistical models that would predict future
regulated pest interception probabilities as a function
of previous regulated pest interception probabilities
and other, governance-related predictor variables.

All data preparation and modeling were per-
formed using R Version 3.3.0(10) with the general-
ized additive mixed models of Section 2.4 using R
package rstanarm.(11)

2.1. Data

The data for the analysis comprise the inspection
history for all consignments classified as fruit Chap-
ter 8,(3) that arrived between January 2007 and De-
cember 2011, a period of five years. The pathway is
a complex one, comprising 80 different tariff codes,
3,150 unique importers, and 3,655 unique suppliers
from 127 countries. For the purposes of this study
we will assume that all significant biosecurity con-

tamination has been captured by the regulatory bor-
der inspection. There were approximately 48,300 in-
spections of more than 75,000 goods. Approximately
5,300 inspections resulted in interception of a reg-
ulated pest, 8,500 inspections resulted in intercep-
tion of a nonregulated pest, and 5,900 inspections
recorded some administrative failure.

For modeling (see Section 2.4), we aggregated
the data by year, tariff, and supplier. This aggrega-
tion was done for two reasons: first, it allowed us to
create models that account for both supplier and
tariff effects, and second, aggregating by year limits
the effects of any seasonality. We use interceptions to
refer to both interceptions of pests and administra-
tive failures throughout the study. An appropriately
formatted data set for modeling was constructed as
follows.

For each year y within 2008 to 2011:

� Compute interception/fail rates for year y − 1
by tariff, supplier, and year for:

(i) administrative interceptions,
(ii) nonregulated pest interceptions,

(iii) regulated pest interceptions.

We denote by Xsty the number of interceptions
out of nsty inspections from tariff t performed in year
y from supplier s. Correspondingly, each inspection
has a probability psty of being intercepted in one of
the ways listed above. Then Xsty was modeled as:

Xsty
d= Binomial(psty, nsty).

Computing interception rates by tariff, supplier,
and year sometimes resulted in very small binomial
denominators, due to the sparse history of inspection
and interceptions produced. For this reason, rather
than raw interception rates, we calculated smoothed
interception rates using parametric empirical
Bayes.(12) In particular, we used the Beta-binomial
model to smooth interception rates for suppliers
within tariffs and years; we provide the full details in
Appendix A.

2.2. Association between Low-Severity and
High-Severity Interceptions

To investigate the association between low-
severity and high-severity interceptions, we calcu-
lated odds ratios and 95% confidence intervals
(using a normal approximation for the log-odds)
for the odds of a regulated pest interception for
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consignments with or without nonregulated pest or
administrative interceptions.

For each inspected consignment, suppose Y de-
notes the outcome of inspection, so that Y = 1 indi-
cates a regulated pest was intercepted. Further, let
X denote whether the consignment contained a non-
regulated pest (or had an administrative failure), so
that X = 1 indicates the consignment contains a non-
regulated pest (or had an administrative failure). The
odds ratio is:

OR =
[

Pr(Y = 1|X = 1)/ Pr(Y = 0|X = 1)
Pr(Y = 1|X = 0)/ Pr(Y = 0|X = 0)

]
.

2.3. Profiling Using Annual Inspection Data

We created profiles using annual inspection data,
and compared performance using ROC curves. For
each year y in 2007 to 2010 and each kind of intercep-
tion rate (regulated pest, nonregulated pest, and ad-
ministrative) we compute ROC curves against year
y + 1 biosecurity inspection outcomes for regulated
pests and, further, calculate the area under the curve
(AUC).

We also computed ROC curves within tariff,
due to the suspicion that the tariff-to-tariff variation
would dominate the ROC signal, due to the differ-
ences of interception rates between the tariffs, rather
than for the importers within the tariffs. That is, if
we only ran the profiles across the tariffs then a naive
assessment of the performance would look very good
because we would expect the differences between the
risks of the tariffs to be reasonably stable from year
to year. Hence, assessing the model within tariffs pro-
vides a more reasonable assessment.

2.4. Profiling Using Statistical Modeling

We chose to construct models using generalized
additive mixed model formulations with the linear
predictors for the logit probability, log( psty

1−psty
) spec-

ified as:

Base : β0 + γs + τt

M1 : β0 + γs + τt + αy

M2 : β0 + γs + τt + αy + ϕst

M3 : β0 + γs + τt + αy + ϕst + κsy

M4 : β0 + γs + τt + αy + ϕst + κsy + b3(pR,st(y−1))

M5 : β0 + γs + τt + αy + ϕst + κsy + b3(pN,st(y−1))

M6 : β0 + γs + τt + αy + ϕst + κsy + b3(pA,st(y−1)),

where β0 is a fixed process constant to be estimated;
γs is a supplier-level effect; τt is a tariff-level effect; αy

is a effect for year of interception; ϕst is an effect for
the supplier-tariff cross-classification; κsy is an effect
for the supplier-year cross-classification; b3(·) repre-
sent cubic regression splines for the previous year’s
regulated pest interception rate pR,st(y−1), nonregu-
lated pest interception rate pN,st(y−1), and adminis-
trative interception rate pA,st(y−1). Bayesian logistic
regression models were fit using rstanarm.(11) We
used student-t priors for all coefficients, setting the
scale for the intercept prior at 10, and for all other
coefficients at 2.5.

To be more descriptive, M4 tests whether his-
torical regulated pest interception rates can be used
to predict future regulated pest interception prob-
ability, while M5 and M6 test effect of historical
nonregulated pest and administrative interception
rates on probability of future regulated pest intercep-
tion.

Comparison of the statistical profiling results was
made via a combination of: LOOIC comparisons,(13)

and predictive log-likelihood via repeated five-fold
cross-validation. LOOIC is similar to AIC in that
it estimates out-of-sample prediction accuracy; how-
ever, LOOIC integrates over uncertainty in the pa-
rameters, and does not assume multivariate normal-
ity as the AIC does. We used 20 repeats, resulting
in 100 training/testing data sets for comparison. To
ensure balance across the data sets, sampling was
performed within years. All models from Section 2.4
were fit to each training data set, and predictions
made on the testing data sets.

3. RESULTS

We present the results in three sections: the as-
sociation between low-severity and high-severity in-
terceptions; the operational AUC tests; and the sta-
tistical modeling results. We finish this section with
an in-depth look at the information gained from the
modeling procedures.

3.1. Association between Low-Severity and
High-Severity Interceptions

Fig. 1 shows the odds ratios, along with 95% con-
fidence intervals, for the association between regu-
lated pest (high-risk) interceptions and nonregulated
pest and administrative (low-risk) interceptions both
overall and by year. All estimates and lower bounds
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Fig. 1. Estimates (95% confidence intervals) of the odds ratios between low- and high-risk interceptions overall and by year (2007–
2011). The odds ratios are calculated between regulated pest (high-risk) interceptions, and nonregulated pest and administrative (low-risk)
interceptions.

of the confidence intervals are well above 1, showing
there is a large association between low- and high-
risk interceptions.

3.2. Comparison of Profiles Using Annual
Inspection Data

3.2.1. Across Tariffs

Fig. 2 presents ROC curves that compare how
well the different profiles perform. As per Sec-
tion 2.3, the profiles are generated from the previous
year’s interception rates. All profiling approaches are
substantially better than random, and the adminis-
trative profile consistently led to the weakest perfor-
mance across each year. We have also shown the per-
formance from a combined profile in Fig. 2; this is
simply the profile using interception rates calculated
from a variable indicating if any of the interception
types occur. Clearly, the combined interception pro-
file offers little performance over the regulated pest
profile.

The profiles derived from nonregulated pest and
administrative interception rates were consistently
slightly worse than those based on regulated pest in-
terception rates. Table I presents the AUC values for
each of the curves presented in Fig. 2. The values are
consistently close to 1, which suggests that the rela-
tive interception rates are very stable from year to
year, and that the interception rates for each year
y are a very good indicator for year y + 1. We also
derived profiles using data without empirical Bayes
smoothing (see Section 2.1); however, these profiles
underperformed compared to the profiles using em-
pirical Bayes smoothing. The results without em-
pirical Bayes smoothing are shown in Appendix B,
Table B1.

3.2.2. Within Tariffs

As noted in Section 2.3, our suspicion was
that tariff-to-tariff variation would dominate the
ROC signal, evidence for which was supported via
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Fig. 2. ROC curves showing the performance of four profiling strategies for four years of data (2007–2011). The profiles are constructed by
tariff and importer using the previous year’s inspection data. A line is added at x = y to facilitate comparison.

Table I. Summary of AUC Values for Profiling Strategies,
by Year

Profile 2008 2009 2010 2011

Regulated pest 0.902 0.929 0.935 0.939
Nonregulated pest 0.870 0.909 0.892 0.920
Administrative 0.743 0.815 0.803 0.813
Combined 0.859 0.896 0.890 0.905

Note: The profiles are as follows: Regulated pest refers to using the
previous year’s regulated pest interception rate; Nonregulated pest
refers to using the previous year’s nonregulated pest interception
rate; Administrative refers to using the previous year’s administra-
tive interception rate; and Combined refers to using the previous
year’s combined interception rate. Each AUC is computed using
the data from the following year’s inspections.

modeling (Table II). Fig. 3 plots the AUCs arising
from the regulated pest profile versus the AUCs aris-
ing from the nonregulated pest, administrative, and
combined profiles, respectively, within tariff. Each
point represents an ROC curve applied to a single
tariff, where the entities within the tariff that are be-
ing profiled are the suppliers. The size of each point

indicates the number of regulated pest interceptions
in the tariff, providing a sense of importance of that
tariff.

A relationship between the number of regulated
pest interceptions and AUC is not apparent in Fig. 3;
we would expect larger points in the top-right corner
if this were the case. However, within-tariff variation
is considerable, providing a measure of conservatism
against the strong performance of the across-tariff
comparisons shown in Table I. This suggests that any
profiling undertaken would need to take account of
the tariff being profiled.

Correlation between the regulated pest profile
and the other profiling strategies appears strong, es-
pecially between the nonregulated pest and com-
bined profiles. The administrative profile results,
however, show that many of the regulated pest AUCs
lie above the y = x line. This suggests that the ad-
ministrative profiles are likely to perform worse than
the nonregulated pest profiles. This observation is
supported by the findings of the statistical modeling
(Table II), where the model that included non-
regulated pest interception rates performed better
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Table II. LOOIC-Based Comparison of Statistical Profiling Models

Model LOOIC se(LOOIC) Eff. P se(Eff. P) �LOOIC se(�LOOIC)

M3 2, 788 111 458 23.3
M4 2, 886 117 470 25.0 98.3 17.0
M2 2, 980 127 419 23.6 192.2 29.4
M1 3, 093 133 377 22.5 304.9 36.6
M5 3, 141 146 449 26.6 353.7 49.6
M6 3, 154 145 446 26.9 366.2 49.6
Base 3, 250 148 392 23.7 462.7 52.3

Note: The model with the smallest LOOIC (M3) is shown first, with subsequent rows ordered by increasing LOOIC. �LOOIC shows the
difference in LOOIC between all models and Model M3; se(�LOOIC) shows the estimated standard error of the difference. Eff. P gives
the estimated effective number of parameters; se(Eff. P) shows its standard error.
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Fig. 3. AUCs computed for each tariff code in the data to assess within-tariff profiling operationally, by year. The y-axis is the AUC
using the previous year’s regulated pest interception rate to set the profile. The x-axis in each panel is the AUC using the previous year’s
nonregulated pest, administration, and combined interception rates to set the profile, assessed on the same inspection data that are used
for the y-axis. The size of the point is related to the number of fails within the profile, and a line has been added at x = y to facilitate
comparison.

than the model including administrative interception
rates.

3.3. Comparison of Profiles Using
Statistical Modeling

Comparison of the models from Section 2.4 is re-
ported in Table II. Model M3 has the lowest LOOIC,

and the difference in LOOIC between M3 and M4
(98.3) is much larger than the standard error of its
difference (17). These results show that supplier and
tariff information are important for predicting regu-
lated pest interception probability. The models are
greatly improved with the addition of interaction
terms between suppliers and tariffs, and suppliers
and years. After allowing for the effects of suppliers,
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tariffs, and years, the addition of the previous year’s
regulated pest interception rate (M4 vs. M3), the pre-
vious year’s nonregulated pest interception rate (M5
vs. M3), and the previous year’s administrative inter-
ception rates (M6 vs. M3) do not improve the model.

Fig. 4 shows the out-of-sample mean log pre-
dictive density and AUCs (Section 2.3) for all sta-
tistical profiling methods. Also shown in Fig. 4(b)
are the AUCs from the regulated pest profile. Mod-
els Base–M3 perform the best in terms of predictive
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Fig. 6. Marginal odds of the supplier effect in Model M3. Suppliers are ordered left-to-right by decreasing posterior probability of their
marginal odds ratio being greater than 1, with bars showing 90% posterior credible intervals.

log-likelihood (larger values are better), with no
clear demarcation between them. In comparison,
Models M1 and M2, as well as the Base model and
the empirical Bayes profile, perform best on AUC.

3.4. Model Examination

In this section, we present an investigation of the
effects from Model M3. We decided to investigate
Model 3 further due to its superior performance in
LOOIC (Table II), as well as the within-supplier ex-
aminations that would be available due to the inter-
action term. Fig. 5 shows the marginal odds ratio for
tariffs from Model M3, ordered left-to-right by de-
creasing probability of their marginal odds ratio be-
ing greater than 1; bars in the figure show 90% pos-
terior credible intervals. The inset shows the top 10
tariffs, and, as to be expected, Kiwi fruit is the tariff
that contributes the highest risk.

Fig. 6 shows the marginal odds ratio for suppli-
ers from the model, ordered left-to-right by decreas-
ing posterior probability of their marginal odds ratio

being greater than 1; bars in the figure show 90% pos-
terior credible intervals. Supplier labels have been
masked for privacy reasons. The suppliers to the left
of the figure are those predicted to have a large in-
crease in probability of regulated pest interception,
all else being equal. It is these suppliers that would
naturally be the first targets in an operational capac-
ity.

Fig. 7 provides a closer examination of the risky
suppliers. We have selected the top 25 suppliers (by
the probability of their marginal odds ratio being
greater than 1) and calculated their posterior prob-
ability of a regulated pest being present in a consign-
ment, averaged over all years from Model M3. The
panel on the left shows their posterior probability for
each tariff that the supplier imports, whilst the panel
on the right shows the observed proportion (aver-
aged over years) of regulated pest interceptions by
tariff. This figure shows that these highest risk sup-
pliers import a range of tariffs—i.e., their poor per-
formance is not necessarily due to importing one or
two of the highest risk tariffs (as shown in Fig. 5).
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(a) Posterior probability of a regulated pest interception.
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(b) Observed proportion of consignments with regulated
pests.

Fig. 7. Posterior probability of a regulated pest interception in the top 25 suppliers, along with the observed proportion of consignments
with regulated pests. Panels are ordered left-to-right, top-to-bottom by the probability of their marginal odds ratio being greater than 1;
bars in the left panel show 90% posterior credible intervals.

Further, in the tariffs they do import, they have
consistently high levels of consignments with regu-
lated pest contamination (right panel, Fig. 7).

Fig. 8 provides a closer examination of suppli-
ers who pose minimal risk. We have selected the
bottom 25 suppliers (by the probability of their
marginal odds ratio being greater than 1) and calcu-
lated their posterior probability of a regulated pest
being present in a consignment, averaged over all
years from Model M3. The panel on the left shows
their posterior probability for each tariff that the sup-
plier imports, while the panel on the right shows the
observed proportion (averaged over years) of con-
signments that did not contain regulated pests by tar-
iff. Similar to Fig. 7, these suppliers import a range
of tariffs—i.e., their good performance is not neces-
sarily due to importing lower risk tariffs. However,
in comparison to the risky suppliers, in the tariffs
they do import, they have consistently high levels of
consignments without regulated pest contamination
(right panel, Fig. 8).

4. DISCUSSION AND CONCLUSION

There was a strong association between reg-
ulated pest interceptions and the lower-risk ad-

ministrative and nonregulated pest interceptions
(Section 3.1). This association was also observed
when using administrative interceptions as a predic-
tor for operational profiling (Fig. 2), demonstrating
the utility of the operational profiling approaches.
However, we note that this does not carry over into
the statistical models (Section 3.3), for which includ-
ing historical rates as predictor variables did not im-
prove model fits.

The statistical profiles still performed well using
the cross-validated AUCs (Fig. 4) as well as the pre-
dictive log-likelihood. Thus, in answer to our moti-
vating question of which data provide the most useful
information about the pathway, we would conclude
that it is the knowledge of particular suppliers, tariffs,
and their combination that is most informative. The
previous year’s regulated pest profile performed well
based on AUC; however, adding this to the statisti-
cal profiles gave no benefit (Table II). Furthermore,
there is limited scope for investigating why a particu-
lar supplier may be problematic. Statistical profiling,
in comparison, allows decisions to be based on pos-
terior probabilities. For example, we could calculate
a supplier’s (marginal) probability of having a reg-
ulated pest interception. Intervention could then be
planned on either the top ranked suppliers (if funds
are limited), or all suppliers that meet a threshold.
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(a) Posterior probability of a regulated pest interception.
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(b) Observed proportion of consignments without
regulated pests.

Fig. 8. Posterior probability of a regulated pest interception in the bottom 25 suppliers, along with the observed proportion of consignments
without regulated pests. Panels are ordered left-to-right, top-to-bottom by the probability of their marginal odds ratio being less than 1; bars
in the left panel show 90% posterior credible intervals.

A benefit of using a statistical modeling ap-
proach to investigate profiling is the added level of
interrogation possible from the fitted model. In Sec-
tion 3.4, we demonstrated how we can gain a clearer
insight into the governance of this pathway. First, by
studying the marginal effects of suppliers and tariffs,
we can build up a picture of risk without relying
on observed rates, which are noisy due to sampling
and process error. We can pinpoint which tariffs and
suppliers contribute to excessive risk, essentially by
an ordering of the marginal odds ratio, and then
choose to investigate those that have a posterior
probability higher than a predefined cutoff set by
management.

With a list of potentially risky suppliers, we fur-
ther demonstrated how a manager could gain infor-
mation into the governance of those suppliers by in-
vestigating the posterior predicted probabilities of
regulated pest interceptions (Fig. 7). This informa-
tion could be used to initially examine why a particu-
lar supplier may be having trouble with contaminated
consignments, and be used to help improve its pro-
cesses. Similarly, looking at the less risky importers
(Fig. 8) may provide information on good process
that can be shared with the riskier importers.

Our use of interception records as a proxy for
biosecurity risk increases the probability of false neg-

atives, which are undetected risks. This effect may
vary systematically across unmeasured variables. For
example, the estimated interception rate of a par-
ticular supplier may be exaggerated if it supplies
predominantly to a port that employs particularly ef-
fective inspectors. The approach suggested in this ar-
ticle could be expanded to include port effects in the
statistical model; if there are particularly effective in-
spectors at a port, then this will be reflected in the
model’s port-level estimates. The outcomes of sup-
pliers that provide predominantly to that port would
then be ameliorated by the port effect. The data set
we have used does not allow this comparison.

The effect of systematic inaccuracies in record-
ing pest interceptions can be estimated. The positive
predictive value (PPV) is defined as the proportion of
recorded pest interceptions that contain pests; per-
fect inspectors would have a PPV equal to 1. PPV
depends upon the true contamination rate and the
effectiveness of the inspectors. Effectiveness is mea-
sured by the inspectors’ sensitivity in detecting pests:
the proportion of contaminated consignments that
are correctly identified (the true positive rate), and
specificity: the proportion of consignments not con-
taminated that are correctly identified (the true neg-
ative rate). Particularly effective inspectors will have
high sensitivity, and high specificity. Mathematically,
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PPV = sensitivity × contamination rate
sensitivity × contamination rate + (1 − specificity) × (1 − contamination rate)

.

An example follows. We assume that the true
contamination rate is 0.1, and the rate at which in-
spectors make false positives (i.e., the rate at which
they record a pest when it is not there) is 0.05. We
can compare the PPV for two different ports. As-
sume that the sensitivity of inspectors at Port A is 0.9,
i.e., they are particularly effective, and the sensitivity
of inspectors at Port B is 0.7, i.e., they are less effec-
tive; all else being equal, the PPV of the inspectors at
Port A is 0.67, and at Port B is 0.61. In other words, if
inspectors at Port B are 22% less effective than those
at Port A, then the PPV is only affected by 8.7%.
Consequently, large changes in effectiveness result in
smaller changes in outcomes for suppliers.

To summarize, statistical models constructed us-
ing inspection data provide sufficient information for
profiling purposes, and can be used to further inter-
rogate the governance of multiple pathways and to
help identify the processes underlying poor perfor-
mance on these pathways.
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APPENDIX A: CALCULATION OF RATES
USING EMPIRICAL BAYES

In this appendix, we detail the procedure used
for calculating the smoothed rates in Section 2.1 via
empirical Bayes. Recall that we have Xsty the num-
ber of failures out of nsty inspections from tariff t
performed in year y from supplier s; we assume that

Xsty
d= Binomial(psty, nsty).

To find the empirical Bayes estimate of psty for
supplier s, in tariff t and year y, assume that the bino-
mial proportions psty have a prior Beta distribution:
psty ∼ Beta(αty, βty). Then Xsty has a Beta-binomial
distribution, with probability mass function

Pr (Xsty = k) =
(

nsty

k

)
	 (nsty + 1)

	 (k + 1) 	 (nsty − k + 1)

×	 (k + αty) 	 (nsty − k + βty)
	 (nsty + αty + βty)

	 (αty + βty)
	 (αty) 	 (βty)

.

The parameters αty and βty are found using maximum
likelihood:

(
α̂ty, β̂ty

)=arg maxαty,βty

{
−

S∑
s=1

log Pr (Xsty =xsty)

}
,

where xsty is the observed value of Xsty, and S is the
number of suppliers. To complete the calculation, the
rates for supplier s in tariff t and year y are updated
using the following formula:

p̃sty = xsty + α̂ty

nsty + α̂ty + β̂ty
.

APPENDIX B: FURTHER RESULTS

Table B1. Summary of AUC Values for Profiling Strategies,
by Year

Profile 2008 2009 2010 2011

Tariff and Supplier
Regulated pest 0.881 0.899 0.902 0.917
Nonregulated pest 0.849 0.878 0.859 0.890
Administrative 0.728 0.767 0.759 0.776
Combined 0.833 0.861 0.854 0.867
Supplier within Tariff
Regulated pest 0.861 0.897 0.903 0.906
Nonregulated pest 0.839 0.880 0.864 0.907
Administrative 0.795 0.841 0.824 0.842
Combined 0.836 0.881 0.871 0.901
Supplier within Tariff, Smoothed
Regulated pest 0.902 0.929 0.935 0.939
Nonregulated pest 0.870 0.909 0.892 0.920
Administrative 0.743 0.815 0.803 0.813
Combined 0.859 0.896 0.890 0.905

Note: The profiles are as follows: Tariff and Supplier refers to pro-
files constructed for the interaction of tariff and supplier, Supplier
within Tariff refers to averaging the supplier interception rates
within tariffs, and Supplier within Tariff, Smoothed refers to us-
ing the empirical Bayes estimate of the suppliers within tariffs and
years. Regulated pest refers to using the previous year’s regulated
pest interception rate; Nonregulated pest refers to using the pre-
vious year’s nonregulated pest interception rate; Administrative
refers to using the previous year’s administrative interception rate;
and Combined refers to using the previous year’s combined inter-
ception rate. Each AUC is computed using the data from the fol-
lowing year’s inspections.
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