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Abstract. Allocating resources to detect invasive pests, diseases, and pathogens on
exposure pathways requires a trade-off between the need to detect as many contaminated
items as possible and the need to acquire knowledge about contamination rates. We develop a
model and an algorithm that provide guidance for the allocation of inspection resources across
multiple dynamic pathways in cases where not every item can be inspected. The model uses a
null hypothesis that the contamination rate of a pathway is above a specified level: a risk
cutoff. Pathways with a risk above the cutoff are fully inspected, and those with a risk below
the cutoff level are monitored at a rate that would detect a change of the risk to being above
the cutoff level with high probability. We base our decision on the 95% upper confidence limit
for the contamination rate. We demonstrate via simulations and a data set that focusing
inspection resources on specific pathways can result in substantially more effective
intervention, and that the reduction in overall effectiveness of monitoring low-risk pathways
need not be substantial. Use of the model demands the selection of the risk cutoff, and this
limit can be set according to projected consequences.
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INTRODUCTION

Nonindigenous pests, weeds, diseases, and pathogens

invade marine and terrestrial environments, with signif-

icant ecological, economic, and human health conse-

quences (Savidge 1987, OTA 1993, Pimentel et al. 2000,

2005, Hulme 2009). Invasive species have been shown to

adversely affect native species, ecosystems, and ecosys-

tem services (Xie et al. 2001, Gurevitch and Padilla

2004, Simberloff 2006, Langor and Sweeney 2009). In

economic terms, Colautti et al. (2006) estimated a range

for costs of between Canadian $13.3 and $34.5 billion

annually for 16 invasive species in Canada. The impact

of invasive species on the environment and agricultural

productivity in the United States is estimated at US$138

billion annually (Pimentel et al. 2005, Pimentel 2007).

Many pests and diseases disperse into environments

associated with commodities that are part of burgeoning

international trade (Costello et al. 2007). Border-based

interceptions play a critical role in the prevention of

these invasions. For example, Haack (2001, 2006)

reported 8341 beetle interceptions for the United

States in a 15-year period (cf. Work et al. 2005,

Brockerhoff et al. 2006).

Effective surveillance systems detect and eliminate as

many threats as possible for a given budget. To develop

effective strategies that avoid or mitigate the conse-

quences of invasive species associated with trade, it is

also necessary to have an understanding of the rate at

which various pests contaminate the traded commodities

(Kenis et al. 2007). Thus inspections at the border play

two roles: they detect and eliminate potential environ-

mental pests and they accumulate information about the

rate of contamination of the units inspected. This paper

focuses on the allocation of inspection resources to

implement policy for acceptable levels of protection

against invasive species and to learn about contamina-

tion rates.

Some previous analytical work has addressed related

topics. Press (2009) proposed a method for allocating

inspection resources for fixed, known prior probabilities

of malfeasance. Cox (2009) recommended a portfolio

approach to deal with dependencies between pathways.

Ramirez-Marquez (2008) focused on preventing attacks

through container cargo using a decision tree based on

multiple sensors, for situations in which historical data

were unavailable or unreliable. Surkov et al. (2008)

integrated the costs of invasion and estimated the

marginal benefits of border inspection. Sikder et al.

(2006) and Moffitt et al. (2008) used rough sets and

information gap, respectively, to offset the estimated

costs of the effects of invasion, about which little is
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known, against the cost of inspections. Finally,

Govindaraju et al. (2010) reviewed the partial inspection

and skipping strategy that has been adopted by the New

Zealand Food Safety Authority.

Here we address the simple and general problem of

how best to allocate surveillance resources among

pathways when historical information is available, when

contamination rates may vary in time, and when we wish

to satisfy the joint objectives of being as effective as

possible and of learning about uncertain and changing

numbers of invasive species in the different pathways.

Although the techniques that we propose are illustrated

in a quarantine setting, they are relevant for a wide array

of problems, including customs and immigration,

disease surveillance in human, animal, and plant

populations, pest and disease eradication systems, and

other contexts that rely on the deployment of limited

surveillance resources among a set of statistical popu-

lations.

THE MODEL

Briefly, the surveillance problem that we address is as

follows. An inspectorate identifies a suite of independent

pathways, each comprising sampling items (e.g., con-

tainers, packets of seed, vehicles, individual animals).

Pathways may refer to importation of different products

via different transport routes, or from different trading

partners, or combinations thereof (e.g., Costello et al.

2007). In general, a pathway is an aggregation or stream

of like items that can be interpreted as a population for

statistical purposes.

Some of the items in the pathway are expected to

contain a potentially damaging, invasive species. Such

items are referred to as ‘‘contaminated’’ items. The

inspectorate must identify as many of these contami-

nated items as possible across all of the pathways.

Identification of contaminated items is carried out by

inspecting the items on the pathway. Inspection

resources are finite. We define the ‘‘approach rate’’ as

the number or rate of contaminated items arriving in a

pathway, and ‘‘leakage’’ as the number or rate of

contaminated items remaining in a pathway after

inspection and intervention.

In general, when only a proportion of incoming goods

can be inspected, efficiency (the number of detections

per unit effort) will be enhanced by reducing inspection

rates in areas where the risks are smallest and increasing

inspection rates where the risks are highest. However,

this approach is counterbalanced by the need to monitor

the pathways for any change in the risk posed. The

challenge is to determine what proportion of a pathway

should be inspected. Should we inspect everything in a

pathway? If we only sample a portion of the pathway,

then what portion should be sampled? Or should the

pathway be ignored?

We define ‘‘managing the risk’’ of the pathways, in a

quarantine context, as knowing that the contamination

rate is below a determined threshold, either by knowing

that the pathway is clean (by monitoring) or by applying

an intervention with statistically predictable effects. The

threshold below which the contamination rate must be

kept is determined with reference to the consequences of

undetected contamination.

We now describe essential characteristics for the

scenarios that are in the scope of this study. First,

inspections are the only means by which the degree of

contamination of a pathway can be estimated. Second,

inspection can only be ‘‘done’’ or ‘‘not done.’’ There can

be occasions when partial inspection is an option; see the

Discussion for further comments on such strategies.

Third, the usefulness of information that has been

collected by inspecting the pathways decreases over

time, because the risk associated with pathways may

change. Finally, the inspectorate operates with a flexible

budget, so that the firm resource limitations associated

with scenarios such as those reported in Cannon (2009)

do not apply.

Given a fixed amount of inspection resources and

exact information on the contamination rate for each

pathway, it is known that the highest number of

contaminated items will be intercepted by inspecting

the pathways that have the highest contamination rate

(see, e.g., Cannon 2009), using the following algorithm.

Resources (for the year) would be allocated to inspect all

of the items that will arrive on the pathway that has the

highest contamination rate. It is assumed that we have a

reasonable estimate of the number of items arriving

along each pathway and that the system is sufficiently

flexible to cope with any change. If sufficient unused

resources remain, the pathway with the second highest

contamination rate would be completely inspected. The

procedure is repeated until resources are depleted. The

lowest-rate pathways may not be inspected at all. This

procedure gives rise to three classes of pathways: one for

which all items are inspected, one for which no items are

inspected, and another for which some items are

inspected. In applications, the limitation on resources

is usually flexible enough to ensure that the one pathway

for which available resources run out is fully inspected.

Note that we can only use historical data to classify

the pathways, but we perform the classification intend-

ing to maximize the future number of intercepted

contaminated items. The information that is used for

the classification has unknown value, and this value will

decrease with the age of the information. This charac-

teristic leads to the possibility that pathways with high

contamination rates might be ignored by inspectors

because either the historical contamination rate was low

by chance, or the contamination rate of the pathway was

previously low but has changed in time.

We now develop a statistical model for the inspection

process. A number N of items is expected on a pathway

over some fixed time period. The unknown probability

that an individual item will contain at least one

contaminant is denoted p. We have historical data

comprising n inspections, from which x contaminated
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items are observed. Although we may know exactly how

many contaminated items did actually arrive during the

year, we shall assume that the consignments were a

random sample of size n from the vast number of items

exported from the source country. Hence, we shall

assume that

x ; Binomialðn; pÞ: ð1Þ

Subscripts will be used to denote different times of

measurement as necessary.

We now introduce the idea of ‘‘predicted risk’’ for a

pathway. This risk will be defined as the estimated

probability of contamination of an item from the

pathway, inflated to reflect uncertainty about the

accuracy of the estimation. Our decisions on what

sample sizes we shall use will be based on the predicted

risk, denoted by f, rather than the estimate of p.

By using the concept of predicted risk, we are arguing

for the need to consider both the estimate of the

contamination probability p and the accuracy of the

estimate when allocating resources. Given two com-

modities with the same contamination rate but different

inspection counts, we would be less certain about the

estimate of the contamination rate for the commodity

that has the lower inspection count; the standard error

of the estimate would be higher. A risk-sensitive solution

requires that we take account of the uncertainty of the

estimate, effectively forcing us to pay for the higher

uncertainty in the same way that we pay for the higher

contamination rate, by allocating additional inspection

resources.

One way to achieve a risk-sensitive solution is to use a

quantile of a one-tailed prediction interval of p to

represent the predicted risk. That is, instead of choosing

the value that is best supported by the data, we choose a

value that represents the upper limit of the interval with

a specified probability of including the rate. For

example, we might choose a predicted risk that

corresponds to the endpoint of the upper 95% prediction

interval of the true contamination rate. Informally, we

could describe this by saying that we are 95% confident

that the current contamination rate is less than f (Fig. 1).

The behavior of different confidence intervals for the

rate parameter of the binomial distribution has been the

subject of some research (see, e.g., Madden et al. 1996,

Brown et al. 2001, Cai 2005). There is considerable

literature to suggest that traditional Wald-style confi-

dence intervals are flawed (see, e.g., Brown et al. 2001,

Cai 2005). For one-tailed confidence intervals with

robust statistical properties, Cai (2005) recommends

Jeffrey intervals, which are Bayesian intervals with a

prior distribution on the binomial parameter equal to

Beta(0.5, 0.5). Jeffrey intervals do not absolutely

guarantee (1 – a)% coverage for all possible combina-

tions of samples and a, but they represent a good

compromise between coverage and parsimony.

Jeffrey intervals are easily computable in standard

spreadsheets. The upper one-tailed confidence interval is

computed from the inverse of the cumulative density

function of the Beta distribution. The Beta distribution

requires two shape parameters a and b; for our model

(Eq. 1), they are computed as a¼xþ 0.5 and b¼ n� xþ
0.5. Thus if we wished to use an upper 95% confidence

interval as our definition for the predicted risk, then the

function call in popular spreadsheet programs for f(n, x,

0.95), the estimated 95% upper confidence interval,

would be

f ðn; x; 0:95Þ ¼ BetaInvð0:95; x þ 0:5; n� x þ 0:5Þ ð2Þ

where x is the observed number of contaminated items,

n is the number of items inspected, and BetaInv is the

inverse of the cumulative distribution function for a

Beta distribution.

Our resource allocation strategy relies on classifica-

tion of the pathways into two classes: ‘‘fully inspected’’

and ‘‘sampled.’’ The classification approach that we

recommend follows hypothesis-testing to guide decision-

making, as originally advocated by Neyman and

Pearson (e.g., Neyman and Pearson 1933). The classi-

fication proceeds as follows. We classify pathways as

either being of such a high risk that all items should be

inspected or being of lesser risk so that only a

proportion of items are inspected in order to confirm

that this low-risk status remains valid. If there are no

restrictions on resources, then the inspectorate nomi-

nates a risk cutoff, r, e.g., 1%. The value of r may be

determined with input from other stakeholders, and may

vary across pathways as a function of expected

consequence. If there are restrictions on resources, then

r would be determined iteratively. In either case, the

value of the predicted risk ( f ) would be determined for

each pathway and then (1) every pathway with f � r

would be fully inspected, and (2) every pathway with f ,

r would be sampled at a rate to be determined, which we

will examine further.

For pathways for which f is close to r or for which

only a few items arrive, the sampling rate must be 100%
in order to gain adequate information about the

contamination rate. We shall still consider such path-

ways as being sampled rather than fully inspected.

We now examine the use of information measured on

the pathway over a period of time to classify the

pathway for the purposes of future inspection. Our goal

is to determine a sampling rate that will estimate and

constrain the probability that pathways are misclassi-

fied. We will use time steps of one year, but only for the

sake of demonstration.

Because all of the items in the higher-risk pathways

are inspected, we shall have an estimate of the

underlying proportion of contaminated items in that

pathway that is as accurate as possible. Even so,

occasionally we will conclude that the predicted risk is

lower than r and erroneously classify the pathway as

lower risk.

In assigning the sampling rates for the lower-risk

pathways, we try to ensure that the pathway will not be
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misclassified as higher risk if the underlying contamina-

tion rate remains the same as represented in the

historical data. In other words, we aim to inspect

sufficient items next year so that there is only a small

probability that the predicted risk observed in that year

will exceed r for those pathways that have lower risk. In

Neyman-Pearson terms, we would like the classification

to have high power, that is, we would like the test to

have a high probability of correctly rejecting the null

hypothesis that the pathway contamination is higher

than r.

The model development follows. We have observed x1
contaminated items from n1 inspected items in the

current year. We use Eq. 2 to assess whether or not the

pathway is high risk. Higher-risk pathways are com-

pletely sampled in the next period, that is, n2¼N2, where

n2 is the number of items to be inspected in the next year.

For the lower-risk pathways we wish to determine n2
so that there is high probability that the predicted risk

that will be calculated from observing x2 contaminated

items from the n2 inspected items will be below the

acceptable risk cutoff r. We use the information

provided by x1 and n1 from this year’s data to estimate

how likely different values of x2 would be for a given

value of n2. This is done with the following ad hoc

algorithm, which might be described as a ‘‘double-

percentile’’ approach, to determine a suitable value of n2.

For any given value of n2, there is a corresponding

(non-integer) value of x2 for which the predicted risk

would be exactly r. Eq. 2 provides one relationship

between x2 and n2, although for speed of calculation it is

better expressed in the form

Betadistðr; x2 þ½; n2 � x2 þ½Þ ¼ 1� a2 ð3Þ

where Betadist is the cumulative density function for the

Beta distribution and a2 (for example, 0.05) is used to

quantify our definition of predicted risk. Based on past

experience, we want to choose n2 so that the likelihood

that we would observe more than this value of x2
contaminated items is small, say a2. In order to resolve

this equation, we need another way to relate x2 and n2.

We use the observed proportion of contaminated

items (x1/n1) to calculate a value y2 that is an upper

percentile (a1) for the number of contaminated items

that might be observed with the inspection of n2 items:

y2 ¼ n2 3 BetaInvð1� a1; n2 3 x1=n1 þ 0:5;

n2 � n2 3 x1=n1 þ 0:5Þ: ð4Þ

If we sample n2 items, there would be only a small

chance that we would observe more than y2 contami-

nated items.

By equating x2 and y2, the value of n2 that is unlikely

to result in the pathway being classified as ‘‘higher risk’’

can be determined. This can be done by solving Eqs. 3

and 4, using a goal-seek tool. The values of a1 and a2

will most likely be identical, and choices for this value

will depend on how concerned we are about wrongly

classifying a lower-risk pathway as being of higher risk.

This point will be discussed later.

Software to perform these operations in the open-

source statistical environment R (R Development Core

Team 2010) is available in the Supplement.

In the case of allocation under exact resource

constraints, we fix either the total number of inspections

that can be done (R m), or the nominated sampling rate

(R m/R n), and use goal-seek software to find the value

for r that is satisfied by the available resources.

We note that the method suggested for choosing the

sample size emphasizes the uncertainty that arises from

small sample sizes. There are alternative ways of

calculating a sample size that may cause more frequent

FIG. 1. Demonstration of the inflation of risk to account for uncertainty. The data are simulated inspections of 100 items, of
which one was contaminated (i.e., contamination rate of 0.01 indicates failure to detect one contaminated item out of 100). The
curved line shows the likelihood function of the estimated rate, using Jeffrey’s approach (Bayesian intervals; see Cai 2005). The
dashed vertical line shows the estimated contamination rate. The short, solid vertical line shows the one-sided, upper 95%
confidence limit on the rate, which we define to be the ‘‘predicted risk.’’
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switching between whether the group should be sampled

at 100% or at a lesser rate, but will also be less

conservative in terms of penalizing the uncertainty.

EXAMPLES

Assume that the historical data are as represented in

Table 1. Using the approach we have just outlined, the

solution to maximizing effectiveness in the short term is

to allocate inspection efforts to commodity A because it

has the higher contamination rate.

If we decide on a cutoff point of 1%, then the method

suggests that we would inspect every instance of

commodity A because the predicted risk for commodity

A is higher than 1%. However, the predicted risk for

commodity B is less than 1%, and so we would only

sample commodity B, taking 1088 items in this case (a

sampling rate of 10.9%). This is the sampling rate that

will result in a predicted risk less than 1% with at least

95% probability, as long as the contamination rate does

not increase.

ULD (unit loading devices) data

To illustrate the proposed inspection strategy in a

more realistic setting, we show a case study drawn from

quarantine inspection in Australia (see Robinson et al.

2008). Under nationally mandated Increased Quarantine

Intervention (IQI), implemented by the Australian

Government in 2001 in response to the outbreak of

foot-and-mouth disease in the United Kingdom, 100%

of unit loading devices (ULDs; containers used for air

transportation) were externally inspected.

Using historical inspection data provided by the

Australian Quarantine Inspection Service, the national

predicted risk for the external inspection for 2007 was

0.0918%. The regional and national predicted risks are

presented in Table 2. The highest regional contamina-

tion rate for external inspection for the year of 2007 was

1.5%, in the Far North region. To simplify the analysis,

we assumed that all items on each pathway were

inspected, and that the inspections were 100% effective,

that is, that no contaminated items escaped detection.

AQIS leakage survey records suggest that the rate at

which inspections miss contamination is sufficiently low

that this assumption is reasonable for our purposes. For

example, DAFF (2009:161, Table 16) notes that

effectiveness for ULD inspections was consistently

.90%.

The results of this analysis have two potential

applications. (1) The predicted risk can be used to

support an assessment of the utility of 100% inspections.

Our results suggest that, because the approach rate is

low, a risk-sensitive approach may recommend sampling

these items at less than 100% and focusing inspection

resources in other pathways if they are identified as

being higher risk. (2) The results can be used to identify

those regions where arriving items have higher contam-

ination rates. Table 2 identifies Far North as having

higher contamination approach rates than the other

regions. For example, if we were to take 1% as a suitable

risk cutoff, then on the strength of these results, it may

be reasonable to maintain the 100% inspection rates in

the Far North region, but to consider reducing the

inspection rates for the other regions.

Simulations

Finally, we use regional historical quarterly ULD

inspection data to compare the effectiveness of the naive

strategy of allocating all inspection resources into the

pathways that have the highest predicted contamination

rates at a given point in time (strategy 1) with our

proposed allocation strategy, which monitors all path-

ways (strategy 2). Our goal is to use this real data set to

provide an example of how much effectiveness is lost by

demanding up-to-date information about the contami-

TABLE 1. Example of risk-sensitive allocation of detection
resources.

Commodity x n f (%) TFSR(%)

A 2 100 5.425 100
B 20 10 000 0.285 10.9

Note: From the observed number, x, of contaminated items
from n inspections, f is the predicted risk, and TFSR is the
tentative future sampling rate (expressed as a percentage) based
on a 1% risk cutoff.

TABLE 2. Suggested inspection rates of ULDs (unit loading devices) in Australia.

Region Contaminated Inspected p (%) f (%) TFSR (%)

Southeast Queensland 58 37 743 0.154 0.190 2.46
Far North Queensland 33 2 957 1.116 1.470 100.00
New South Wales 137 207 764 0.066 0.076 0.33
South Australia 59 17 510 0.337 0.415 10.10
Victoria 24 91 491 0.026 0.036 0.65
Western Australia 0 14 067 0.000 0.014 3.83

National 311 371 532 0.084 0.092 0.20

Notes: For each region, the number of contaminated and inspected ULDs in 2007 was used to
determine the average contamination rate, p, and the predicted risk, f, both expressed as
percentages. Eq. 4 was used to calculate the tentative future sampling rate, TFSR, based on a risk
cutoff of 1%. The table also gives the sampling rate based on the national figures taken as a whole.
It should be noted that this national sampling rate is not the same as that obtained by aggregating
the regional sampling rates.
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nation rate for all of the pathways, and how much

effectiveness is gained by detecting and responding to

changes in approach rate. We view strategy 1 as a straw-

man argument; it is impossible to allocate inspection

resources reliably without at least some information on

the pathways.

The inspection data cover seven regions, which we

treat as pathways, from Quarter 3 of 2003 to Quarter 1

of 2008, inclusive (19 quarters). The data comprise

external inspections of 1 786 858 ULDs, of which 1805

were contaminated, representing a 0.10% approach rate

for contamination.

Strategy 1 provides an algorithm for allocating

resources to different pathways, but no way to set the

total available resources, other than by budgetary

constraints. In order to provide a balanced comparison,

we ran strategy 2 first, using 1% as the risk cutoff, and

recorded the mean total number of inspections across all

of the simulations. We then used the same average

number of inspections for strategy 1.

The following algorithms were used to compute the

efficiency of the two strategies. For strategy 1, we wish

to allocate the inspection resources to the riskiest

pathways. In order to deploy this strategy it is essential

that we have an estimate of the risk of each pathway to

begin with. To simulate this process we used the

inspection results for each of the 19 quarters as the

estimate of risk to be used for allocating inspection

resources for all of the other quarters. The allocated

sampling rates were then held constant throughout the

simulation, as prescribed by the strategy. This simula-

tion approach resulted in 19 distinct inspection time

lines, the results of which we summarized by their mean.

The small variation in effectiveness between simulation

runs arose from finding a slightly different number of

contaminated items in the one region that was only

partially inspected (because resources ran out).

The effectiveness of strategy 2 was estimated by

simulating the following allocation algorithm 500 times.

Again, we assumed that all items were inspected in the

first quarter and determined the amount of sampling for

the second quarter. We then simulated the number of

contaminated items detected using random draws from

the hyper-geometric distribution. Thereafter, the simu-

lated results of inspection for one quarter were used to

determine the sampling rate for the next quarter.

Results of the comparison are reported in Table 3,

they do not include the initial quarter. In terms of

categorization, the contamination rate for South

Australia was close to the risk cutoff, and the state

switched from the 100% inspection category to the

sampled category an average of 5.9 times over the 17

possible quarters (switching is impossible in the first

quarter, and meaningless in the second). The Far North

switched on average 1.1 times, and switching rates were

negligible for the other regions.

DISCUSSION

Table 3 shows that the positive consequences for

effectiveness and leakage of adopting either strategy 1 or

2, as opposed to inspecting a similar number of items

that are chosen randomly, are substantial. It is clear that

there are systematic differences between the inherent

contamination rates of the pathways for this example,

and that these differences persist sufficiently to justify

taking account of them in allocating inspection resourc-

es. Furthermore, for this example, the loss of effective-

ness that results from monitoring the less-risky

pathways compared to concentrating solely on the

highest-risk pathways is negligible. Recall that strategy

1 allocates inspection resources optimally based on

complete knowledge at a specific point in time. The

differences between the effectiveness and leakage of

strategy 1 and strategy 2 are modest.

Generally speaking, the algorithm that we have

presented will allocate more resources to the monitoring

of pathways that are known to have high contamination

rates and to those pathways with a poorly known

contamination rate. Only pathways that are reasonably

confidently known to be contaminated at low rates will

be allocated comparatively fewer resources. However, it

is likely that there will be pathways that have risk close

to the cutoff. Such pathways will flip between the high

and low classes. In such cases, the proportions of items

that are contaminated in the pathways will be similar,

and the consequences of the misclassification will be

small in terms of the number of contaminated items that

are not detected.

It is inevitable that estimates and arbitrary trade-offs

will be made in balancing risk management objectives.

Our approach to allocating inspection resources differs

from solutions advanced by other authors, for example

Surkov et al. (2008), in that it provides a simpler and

more straightforward framework for handling questions

of risk. The difference is in the level of abstraction that is

invoked. The cutoff can be set relative to economic

TABLE 3. Summary of simulated comparison of inspection allocation strategies.

Strategy Inspection rate (%) Effectiveness (%) Leakage

Inspect random items 6.4 6.4 0.095%
1) Only inspect the most risky pathways 6.4 24.7 0.076%
2) Reserve some of the inspection capability to monitor lower-risk pathways 6.4 21.4 0.079%

Note: The inspection rate is the percentage of items that are inspected and was constant for each strategy; effectiveness is the
percentage of contaminated items that are intercepted; and leakage is the average rate at which items are still contaminated after
intervention has been performed.
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information about consequences of incursion if it is

available. Organizations that lack the means or the data

to deploy a complete economic approach will find our

simpler strategy more feasible.

The model we have outlined does not deal explicitly

with uncertainty in the number of items arriving in each

pathway. We have assumed that, in the first instance, the

current volume (or a percentage change) is a reasonable

estimate of the future volume. If the cutoff value r is

determined without consideration of the number of

items that will be inspected, the number of items in a

pathway only enters into the calculations in converting

the number of samples required into a sampling rate. If,

during the year, it is thought that the number of items

arriving has materially changed, the sampling rate can

be recalculated. In contrast, if the value of r is

determined by the amount of inspections that can be

done, the consequences of uncertainty about the number

of items arriving is much greater. In such a case, a more

frequent analysis of the data to recalculate sampling

rates is probably the simplest approach.

We have considered a situation in which it is not

possible to ‘‘partly’’ inspect: an item is either inspected

or it is not. There are cases in which one can set the level

of intervention for each pathway, for example by

inspecting a different number of fruits in a carton and/

or inspecting a different number of cartons (see, e.g.,

Cannon 2009). Although setting the level of intervention

is an attractive approach to allocating resources if it is

possible, there is still the same problem about needing to

monitor adequately for changes in the contamination

rate. The optimal solution may not provide sufficient

information and a compromise solution must be

accepted.

In our examples, we nominated the 0.95 quantile in

defining predicted risk. However, it is not clear that this

amount represents an appropriate penalty for uncer-

tainty, and the most appropriate value could be more or

less. Strictly speaking, this consideration is a function of

the consequences of the type 1 and type 2 errors, and

estimates of the marginal benefits of inspection, such as

those published by Surkov et al. (2008), may be useful in

determining the best trade-off. Otherwise, we have

assumed that the inspectorate will account for the

consequences of invasion by setting an appropriate risk

level.

If we have a fully automatic system for determining

the rate at which each pathway is sampled, misclassifi-

cation of a lower-risk pathway as a higher-risk ‘‘100%

inspected’’ pathway is not a substantial problem. We

would have the ability to recalculate the sampling rates,

possibly not instantaneously, but certainly quite fre-

quently. Hence any pathway falsely classified as higher

risk would soon revert to a lower-risk category. Such

frequent changes of sampling rates may be difficult to

manage in a manual system where inspectors need to

decide which items to inspect.

We emphasize that the prescriptions from analyses

like these should be treated as guidelines, rather than

hard-and-fast rules. The practicalities of the physical

constraints of inspection will inevitably outweigh some

elements of the risk analysis. Even if the 100% inspection

class remains relatively constant, the sample rate for the

non-100%-sampled categories will change each year.

This regular change may lead to complications that

outweigh the benefits. Under these circumstances, using

a constant rate (say 5% or 10%) would be more

practical, perhaps with the proviso that if the number

of items approaching is low, the sampling rate should be

increased. Furthermore, although it is not considered in

this analysis, a system must always be flexible enough to

cope with intelligence from external sources that the risk

has changed, for example because of an outbreak of

disease in the source country.

We have used annual and quarterly data as a basis for

inspection and allocation, and considered each pathway

distinctly. Future work will determine whether some

temporal smoothing approach will allow for improved

use of resources. We will also examine the question of

whether some aggregation across pathways, or alterna-

tively smoothing across estimates of pathway contam-

ination rates, provides greater stability without

sacrificing too much specificity.

To sum up, in order to provide security against

mistakenly ignoring contaminated pathways, we believe

that no pathway should go entirely uninspected. This

position differs from advice by, for example, Horan et

al. (2002), who advocate allocation of few or no

resources to confronting events that are less possible,

regardless of the expected damages of those events. We

agree with Cannon (2009), who describes leaving some

pathways uninspected as unsatisfactory. Our prescrip-

tions differ from those of Hua et al. (2006) and Surkov

et al. (2008) in this way; no pathway is left uninspected.

Naive risk analysis focuses on maximizing detection

rates in the present. Strategic risk analysis demands both

detection and estimation, recognizing that future re-

source allocation will require up-to-date information

about the relative risks of pathways. We provide an

algorithm that allows for this strategic approach.
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R code used to create the results that are presented in Table 2 (Ecological Archives A021-066-S1).
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