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Time-Series Models for Border Inspection Data

Geoffrey Decrouez'* and Andrew Robinson+?

We propose a new modeling approach for inspection data that provides a more useful inter-
pretation of the patterns of detections of invasive pests, using cargo inspection as a motivat-
ing example. Methods that are currently in use generally classify shipments according to their
likelihood of carrying biosecurity risk material, given available historical and contextual data.
Ideally, decisions regarding which cargo containers to inspect should be made in real time,
and the models used should be able to focus efforts when the risk is higher. In this study, we
propose a dynamic approach that treats the data as a time series in order to detect periods of
high risk. A regulatory organization will respond differently to evidence of systematic prob-
lems than evidence of random problems, so testing for serial correlation is of major interest.
We compare three models that account for various degrees of serial dependence within the
data. First is the independence model where the prediction of the arrival of a risky shipment
is made solely on the basis of contextual information, We also consider a Markov chain that
allows dependence between successive observations, and a hidden Markov model that allows
further dependence on past data. The predictive performance of the models is then evaluated

using ROC and leakage curves. We illustrate this methodology on two sets of real inspection
data.

KEY WORDS: Border inspection; hidden Markov model; independent model; leakage curves; Markov
chain; ROC curve; serial dependence

1. INTRODUCTION

A primary challenge in the border inspection of
imported goods is to determine, ideally in real time,
how much inspection effort to apply to each incom-
ing item. Contextual data are usually available about
imported items before their arrival, for example, the
contents, the country of origin, and the identities of
the supplier or the importer. When combined with
inspection history, the contextual data provide a po-
tentially rich source of information that can be used
to prioritize items for inspection effort, a process re-
ferred to as profiling. The priority for inspection can
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be represented in many ways, and here we choose
to try to estimate the probability that each item is
contaminated.

We begin with some definitions. A shipment ar-
riving at the border contains a certain number of con-
signments. Each consignment can contain a different
number of individual products or items of a different
nature, also called lines. A fraction of these items are
inspected. We define a pathway as the aggregation of
like items. A pathway is analogous to a population or
a process in statistical modeling, and its specification
is usually guided by operational concerns as much as
statistical rigor. For example, all air passengers en-
tering a country could be considered a pathway, as
could all returning nationals, or all returning nation-
als arriving at a certain airport, or even on a given
flight number.

A container or a consignment is said to be “con-
taminated” if it contains biosecurity risk material,
such as an invasive pest or disease. We will call
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consignments that do not have pests clean. The list of
pests and diseases identified as a potential threat de-
pends on the pathway considered. For example, for
the wheat pathway, quarantine services try to inter-
cept consignments that could contain the smut fungus
Tilletia indica, which causes karnal bunt, a disease of
wheat. Karnal bunt on wheat has never been iden-
tified in Australia, and an incursion could have huge
environmental and economical consequences.() The
status of an incoming product may depend on various
factors, as mentioned above; we refer to these factors
as covariates. Based on historical data, one may es-
timate which covariate is more likely to differentiate
between clean and contaminated consignments.

In this study, we consider the status of incom-
ing products to be a binary time series, that is, the
item is either clean or contaminated. Our rationale is
twofold. First, it is of practical interest to have an es-
timate of the probability of compliance of incoming
consignments. This probability should capture any
instantaneous change in the status of incoming con-
signments: periods of low/high risks of presence of
invasive species should be reflected in the evolution
of this probability. Second, one wants to predict the
status of a consignment based on past data to de-
velop a strategy for surveillance of incoming products
and efficiently prevent invasive species from entering
the country. The novelty of this study is to include
a dynamic component to the surveillance procedure
by viewing the status of consignments as a time se-
ries. Serial dependence, when present, can then be
used as a way to improve the prediction of arrival
of risky containers. This study incorporates existing
static methods for classifying shipments, and then
uses this classification to predict the arrival of risky
shipments in real time.

To simplify our development, we assume perfect
detection, that is, if a contaminated consignment is
inspected, then the contamination is detected. We
return to this point in the discussion in Section 4.
We consider three discrete time-series models that
account for different levels of serial dependence.
First, the independence model assumes no corre-
lation structure at all. This approach is equivalent
to a static approach, since all decisions are based
on information about covariates. Second, we model
the observation sequence as a two-state first-order
Markov chain, which allows a first-order correlation
on past data. It can be used together with the infor-
mation about the covariates to predict the status of
the next shipment. Finally, we consider a binomial
hidden Markov model (HMM). In an HMM, the
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Table I. Status of Items Arriving at the Border Sorted by Time

Arrival Quarantine Supplier Importer

Date Entry Country code Code  Fail
4/01/09 A C CCC7538 08357 FALSE
4/01/09 B N CCC7503 34750 FALSE
5/01/09 C A CCC2432 03409 TRUE
6/01/09 D B CCC6884 28234 TRUE
6/01/09 D B CCC6884 28234 TRUE
6/01/09 D B CCC6884 28234 TRUE
6/01/09 E C CCCo084 34800 FALSE
7/01/09 F F CCC1263 84546  FALSE

Note: Items arrive with information including the country of ori-
gin, the supplier and importer names/codes. The column labeled
quarantine entry reports the identification number of a container.
A container can contain several items or lines of ditferent type.
For example, quarantine entry A contains stock feedproducts of
three different kinds. The status of an item is binary and equals
1 (=TRUE) if it fails the quarantine test. The three time-series
meodels we consider in this study, corresponding to this data, are
provided in Fig. 1.

status of an item is directly observed by quarantine
services, and depends on a hidden state, which cor-
responds to the status of the pathway, for instance,
to the status of the importer. An importer can be
referred to as noncompliant if its consignments
demonstrate a pattern of contamination. Table I
presents artificial inspection data for the purpose of
demonstrating the models, and the associated three
models are depicted in Fig. 1. The HMM enables
us to address the two objectives given before. First,
the time series is not Markovian, which means that
the status of an incoming consignment does not only
depend on the current status, but also on the past ob-
servations. Second, once an HMM is fit to the data,
prediction based on likelihood can be performed in
a fast and efficient way using well-known algorithms.

We advocate fitting the three models to the en-
tire data set, and then to subsets of the data corre-
sponding to a specific importer or supplier. By do-
ing this, we first test for the presence of correlation
and patterns of contamination for the whole path-
way. If the value of the covariates is more infor-
mative than the correlation structure for predicting
the status of incoming shipments, which occurs when
no systematic problems are detected, then the inde-
pendence model will perform as well as other can-
didate models. We also investigate the presence of
serial dependence for a specific importer or supplier,
which occurs, for example, when a supplier suffers
from seasonal contamination of his crops, or when
an importer does not closely monitor the quality
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Fig. 1. The binary observation sequence corresponds to the data
given in Table 1. The value 1 stands for a noncompliant consign-
ment, and a 0 for when no contamination is detected. The serial
dependence is depicted using arrows. The top plot presents the in-
dependence model; see Section 2.3.1. Successive observations are
assumed to be independent from each other, given the values of
the covariates. In the middle plot, the binary status follows a two-
state Markov chain: the status of the next arriving container de-
pends only on the current status; see Section 2.3.2. The bottom
plot shows a HMM. Circles are hidden states and correspond, for
example, to the status of an importer or supplier (C for clean and
N for noncompliant). The true status is unknown in real life, and
is given here only for illustration. Squares are observations, corre-
sponding to the status of an item in the shipment, from the data
given in Table I. Observations are assumed to follow a Bernoulli
distribution, where the probability of an item being contaminated
depends on the hidden state C or N. Hidden variables are assumed
to follow a Markov chain. See Section 2.3.3 for further details.

of the goods. We demonstrate this approach in our
examples.

The article is organized as follows. Section 2 de-
tails the proposed methodology. We review and dis-
cuss different existing approaches used to classify co-
variates according to their level of risk in Section 2.2.
We then describe in Section 2.3 the three time-
series models considered: the independent model,
the Markov chain, and the HMM. Finally, Section 2.4
addresses model selection and explains how the pre-
dictive performance of the selected model can be as-
sessed using ROC and leakage curves. Section 3 illus-
trates the methodology on two real data sets taken
from the mangosteen and the stockfeed pathways.
Section 4 concludes with some additional remarks
and a discussion.

2. METHODOLOGY

2.1. Quarantine Data

Quarantine data are usually accompanied by
contextual data, such as the identity of the supplier
or the importer, the description of the goods, or the
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country of origin. A first approach is to fit a time se-
ries to the full data set, possibly split over different
time periods, and to use the contextual information
as predictors or covariates. The aim here is to detect
periods of high risk, where most of the goods belong-
ing to a same pathway would suffer from contamina-
tion, for example, due to pests that respond to sea-
sonal influences.

We also look for patterns of contamination at the
importer and supplier level. In this case, the time-
series models capture periods of high or low risk
specific to a given supplier/importer. Quarantine
inspection services are particularly interested in in-
formation about importers since they have a direct
control over them and can take appropriate decisions
during periods of high risk. In Section 3, we consider
both approaches.

2.2. Classification of Covariates

The large amount of contextual data (covariates)
requires methods to decide which information can
be used to predict the high/low risk associated with
subsequent shipments. A brief review of quarantine
intervention for cargo at the border in Australia
follows. Broadly speaking, pathway risk is managed
by inspection at the border if the pathway risk is con-
sidered high enough. Otherwise, the risk is managed
at the border by sighting documentation, for exam-
ple, demonstrating relevant off-shore trealments.
Two approaches are typically taken to the choice
of intervention strategies: policy and modeling. In
the former, the inspectorate forms a position as to
the biosecurity risk posed by an import based on
an import risk analysis, which is a summary of the
state-of-the-art scientific knowledge of the biology
of the likely pests and the projected impact upon
social, economic, and ecological goods. The second
approach is based on a statistical analysis of patterns
of risk, using various analytical tools. There is an
increasing acceptance that the outcomes of border
inspections can and should be used to inform the in-
spectorate about the risk presented by the pathway.

In the United States, the Government Account-
ability Office (GAO) has published reports on cargo
and agricultural inspections; see, for example, GAO-
04-557T and GAO-08-96T. According to the latter
report, the U.S. Department of Agriculture estimates
the cost associated with the introduction of pests
and diseases into the mainland to tens of billions
of dollars annually. Moreover, since September 11,
2011, the United States is concerned with the attempt
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to smuggle weapons into the mainland, one possi-
ble method being by cargo containers. Since 2003,
shipment and passenger inspections are carried out
by the U.S. Customs and Border Protection (CBP).
The large volume of imports prevents CBP inspec-
tors from fully inspecting all containers and passen-
gers. Instead, CBP uses a targeting strategy called
Automated Targeting System (ATS), which assigns a
risk level to shipments based on the shipment infor-
mation, to help identify high-risk shipments and pas-
sengers for inspection, and prioritize their use of re-
sources. The mathematical models used by CBP are
not publicly available.

In this study, we focus on the contextual data giv-
ing the identity of the importer, the supplier, and the
country of origin. The classification is performed on
training data, where a time-series model is also fit;
see next section. For each covariate, we compute the
proportion of items found contaminated during this
time period, also referred to as the consignment-level
failure rate. If the failure rate is above a threshold,
say R, then the corresponding level of the covariate
is labeled “risky.” The value of R may vary for each
covariate. When more information is taken into ac-
count, one may use a ridge regression to estimate
the risk level of a shipment. Explanatory variables
correspond to the covariates, and the response vari-
able to the risk level of a shipment. Then one iden-
tifies covariates that have the most influence from
the size of the standardized, estimated coefficients;
see, for example, Ref. 2 where the authors applied
this method to the detection of nuclear materials in
shipments.

Contextual data are available for each shipment
arriving at the border. Costs associated with data col-
lection for the proposed methodology are not higher
than the costs associated with classification methods
already implemented.

2.3. Mathematical Maodels

In this section, we describe the models. Partic-
ular focus is given to how the covariates are in-
cluded, Expression of the likelihood and technical
details about parameter estimation are postponed to
the Appendix. We denote observations by y1, ..., y,
where n is the total number of observations, and
yi€{0, 1}, fori =1,...,n, corresponding to the sta-
tus of a consignment. Throughout this article, cap-
ital letters are used to denote random variables,
and the corresponding small letters to observations.
Let Yiu=(Y,..., ¥), for i =1,...,n Covariates
at time i are denoted by z; = (1, gi1..... 5.k)', I =
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1,..., n, wheret is the transpose operator and K = 0
represents the total number of covariates. Let zy; =
(z1, ..., z). The full observation sequence is split in

two parts. The first part is referred to as the training
period, where the models are fit and where model se-
lection is addressed. The second part is used for pre-
diction (see next section) and is referred to as the test
period.

2.3.1. Independent Model

Random variables ¥,...,%, are assumed
to be mutually independent, with P(¥, =1|
Yii-1,21:) =P(Y, = 1 | z;) = p;, where logit(p;) =
'z, i=1,....,n, = (ap,1,...,0g) are the
covariate coefficients.

2.3.2. Markov Chain

The observation sequence Y, ..., ¥, is assumed
to follow the dynamics of a Markov chain. It sat-
isfies P(Y, | Yi-1, 21i-1) = P(¥: | Y1, zi—1). Future
observations are independent of the history of the
process given the present value. The dynamics of the
chain at time i are completely characterized by its
transition matrix

A(f)z(am(i:) l_ﬂm(t:))
aw(i) 1—ayp(i)

at time {, where ap(i) = P(Y41 =0| ¥ =0, ) and
ap(i) = P(Yy1 = 0| % = 1, z), with the initial dis-
tribution P(Y; = y; | ;). The transition probabili-
ties ago(i) and aio(i) depend on the covariates via
the logistic link function, logit(ag(i)) = p'z and
logit(ago(i)) = ¥'%;, where 8 = (Bo, f1. ..., Bx)" and
¥ = (YO,)’ly---,VK)I,fUI'i = 1......?1.

2.3.3. HMMs

HMMs are a very popular class of models
due to their simplicity, and have been applied to
many applied problems, for example, in speech
recognition,® in biomedical modeling,*) and in
molecular biology,!® but not yet to our knowledge
in the area of border inspections. Covariates can
be added to a HMM; see, for instance, applica-
tions in cognitive science!” and in experimental
psychology.® For other applications of HMM, with
and without covariates, we refer the reader to Ref. 9.

In HMM, the observation distribution depends
on the state of an unobserved underlying two-state
Markov chain {X;}. We use the same notation as
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in Section 2.3.3 for the dynamics of {X;}. Given
the chain is in state j, where j =0 and 1 corre-
sponds to the states C and N in Fig. 1, the prob-
ability of noncompliance is p;(i)=P(¥, =1| X =
J. %), so that the conditional distribution of ¥| X is
Bernoulli. We refer to p;(i) as the state-dependent
probabilities, and we model their dependence on co-
variates with the logistic link function logit(pg(i)) =
8'z;, and logit(py(i)) =t'%;, for i =1,...,n, with
§= (SU’S!J Ex iy 'SK)I and§ = (4—01 [ T EK)I' BYCUH'
struction, the random variables {¥;} are mutually in-
dependent conditionally on { X;}.

2.4. Model Selection and Prediction

Model selection is performed using the Akaike
information criterion (AIC), defined by AIC=
—2log L+ 2k, where L is the likelihood of the fit-
ted model, k the number of parameters to estimate, n
the sample size, and the Bayesian information crite-
rion (BIC), defined by BIC = —21log L + klogn. The
selected model is the one with the smallest AIC or
BIC. There is no clear reason to prefer one crite-
rion over the other. On the one hand, if the family
of models considered contains the true model, then
the BIC is asymptotically consistent, which means it
selects the true model as the sample sizes go to in-
finity. In our setting, there is not a true model that
contains a clear subset of all possible covariates. On
the other hand, the AIC does not assume the exis-
tence of a true model. However, as the sample size in-
creases, the AIC tends to choose models that contain
too many parameters, which is not the case for the
BIC because of the heavy penalty imposed on mod-
els with many parameters. As such, we report both
the AIC and BIC.

The AIC and BIC are used to detect the pres-
ence or absence of serial dependence in the time se-
ries, and to indicate when a Markov chain or HMM
provides a better fit than the independence model.
When this is the case, the serial dependence suggests
the presence of contamination patterns, and these
models are used for prediction. When there is no evi-
dence of patterns of contamination, that is, when the
AIC/BIC selects the independence model, prediction
should be made from existing methods of classifica-
tion presented in Section 2.2.

When a Markov model or HMM is selected from
the training data, we use it to predict the probabil-
ity of noncompliance of subsequent shipments over a
new period of time called the test period. The covari-
ates classified as “risky” during the training period
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Table II. Definition of a, b, ¢c,and d

Item Contaminated Item Clean

Inspected a = true positive
Not inspected ¢ = false negative

b = false positive
d = true negative

are still classified as “risky” in the test period. The
one-step-ahead probability P(Y..q =0 vy, 214) 15
computed using the parameters estimated during the
training period. For the HMM, it can be expressed as
aratio of likelihoods, and can be efficiently computed
using the so-called forward variable.!!*) The entire
probability distribution for the forecast can be com-
puted. It provides a way to obtain not only point fore-
casts, but also interval forecasts. Since our process is
binary, confidence intervals for the forecasts are not
informative. Higher-order joint forecast distributions
can be computed similarly, see Chapter 5 in Ref. 9.
The decision rule that derives from these mod-
els is as follows. The predicted probability P(¥,;; =
0| 1., z1:) is compared with a threshold pr € [0, 1].
If P(Yi:1 =0] yi4. %) < pr, then inspect the con-
signment, otherwise do not inspect. The limit cases
correspond to pr = 0 where we inspect nothing, and
pr = 1 where we inspect everything. For a given pr,
we record the number of items inspected and not
inspected that are actually clean and contaminated
for the test period. We denote these numbers by
a(pr), b(pr), c(pr), and d( pr); see Table II. For con-
venience, we drop the explicit dependence on pr.
ROC curves and leakage curves provide a good way
of assessing the predictive power of a model. The
ROC curve plots the true positives (given by the ratio
a/(a + c), also known as sensitivity) against the false
positives (given by b/(b + d), which is 1 minus the so-
called specificity), and provides an idea of how many
false positives to expect for a given effectiveness. The
leakage curve plots the probability of an item being
not inspected given that it is contaminated, ¢/(a + c),
against the total number of inspected items a + b,
thus giving an idea of how much effort must be un-
dertaken to reduce leakage below a given level.

2.5. Risk Analysis

The project reported in this article reflected the
context of developing statistical tools to support risk-
based approaches to the management of the biosecu-
rity risk of imports. The reported innovation focuses
on at-border intervention, although mitigatory
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Table IIl. Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) for the Time-Series Models Fitted to
the Mangosteen Pathway; the Best AIC/BIC Are Highlighted

Independence Markov HMM

Covariates  AIC BIC AIC BIC AIC BIC

0 4452 4491 4438 4518 440.3 4603
(1) 4427 4507 4436 4595 4411 4770
(5) 4204 4284 4506 4665 4241 4601
(1+5) 420.3 4323 4532 4772 4262 4780

interventions are also in place offshore (preborder)
and onshore (postborder). It is accepted that the
pathways for which such tools might be deployed
should be considered low risk, that is, there should
be a broad acceptance that there will be some leak-
age of contaminated consignments, and the purpose
of the intervention is to reduce the rate rather than
eliminate the possibility. This policy approach is in
line with the prescriptions of Ref. 10, which stated

“zero risk is unattainable and undesirable”; see also
Ref. 11,

3. ILLUSTRATION

3.1. Mangosteen Pathway

The mangosteen pathway comprises 644 obser-
vations from December 2005 to December 2010.
During this period of time, 23.3% containers were
found contaminated. All mangosteens are imported
from a single country, and we consider only the im-
porter and supplier codes as covariates. We fit the
data using the models described in the previous sec-
tion on the first 400 observations, then test the predic-
tion on the remaining 244, The data set is too small
to consider a subset corresponding to a single sup-
plier or a single importer. The threshold R is taken to
be 0.15 for suppliers (which yields the classification
of 67.7% of them as “risky™) and 0.2 for importers
(70.2% as risky). The AIC and BIC are presented in
Table III. Covariates are indicated in brackets, (I) for
importer and (S) for supplier, and (I+S) for a combi-
nation of both. Empty brackets denote no covariates.

The independence model and the HMM fit the
data better than the Markov chain. The AIC are
similar for the independence model and the HMM,
and the BIC favors the independence model since it
contains less parameters. In fact, the good fit of the
HMM is due to the instantaneous dependence of the
observation to the present covariate, corresponding
to the term P(Y; = y; | X; = x;, z;) in the expression
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of the likelihood (see the Appendix) and not to the
dependence structure captured by the Markov chain.
Including supplier identity as a covariate improves
the fit for this time series.

This pathway provides an example where the
procedure described in Section 2 indicates a lack of
systematic contamination patterns. Prediction of the
risk level of subsequent shipments should be based
on their classification.

3.2. Stockfeed Pathway

We now focus on the inspection of stockfeed
(e.g., food for cattle, chickens, wheat gluten, aquar-
ium fish food) arriving at the Australian border. In
the six years spanning October 2005-October 2011,
an annual average of nearly 6,500 consignments re-
lated in some way to stockfeed were imported into
Australia, amounting to nearly 18 per day. For stock-
feed products, all consignments or all lines are in-
spected, which can be very expensive.

The training period is taken to be from 2005 to
the end of 2010, and the test period is the year 2011.
As for the mangosteen pathway, directly analyzing
the full time series does not show the benefits of us-
ing a model that allows correlation, compared to the
independence model. However, the data set is large
enough to analyze the time series corresponding to
a specific importer or supplier. For quarantine ser-
vices, it is often more valuable to analyze the level of
risk of an importer, since importers pay for inspec-
tions. We focus on one importer, whose time series
shows the presence of noncompliant items, and for
whom we have enough data for the six-year period.
The data set chosen comprises 662 observations, 582
for the training period, and 80 for the test period. For
this importer, we do not consider any covariates since
it is mainly importing from two suppliers (represent-
ing 43% and 42% of the total imports), and from two
countries (86% and 12%). Considering the models
with no covariate has the advantage to target periods
of high-level risk for this importer due to the serial
dependence of the sequence.

The AIC and BIC are given in Table IV. The
Markov chain and the HMM represent a better fit for
this importer, compared to the independence model.
The corresponding estimates of the transition matrix
and the state dependent probabilities for the HMM,
together with 95% confidence intervals, are:

i (0.995 (0.967,0.999) 0.005 (0.001, 0.033))

0.124 (0.031,0.799) 0.876 (0.201, 0.969)
1)
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Table IV. Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) for the Time-Series Models Fitted to
the Stockfeed Pathway, for a Specific Importer; the Best
AIC/BIC Are Highlighted

Independence Markov HMM
AlC 162.6 136.4 135.6
BIC 166.9 145.1 1574

and o =0.01(107%,0.019) and p; =0.53(0.017,
0.999). We used the percentile bootstrap with 999
resamples to compute confidence intervals.®: 12 A
discussion about the confidence intervals is in order
here. The first state of the Markov chain is clearly
persistent; once the chain enters this state, there is
a large probability that it remains in it, which is not
as pronounced for the second state. The confidence
interval for pg is very narrow around the point es-
timate, so that the probability of noncompliance is
very low when the chain is in the first state. However,
the high persistence of the first state has a substan-
tial effect on the confidence interval for p;, which is
not informative. In fact, values of p; close to 0 oc-
cur when the chain of the bootstrap resamples does
not leave the first state at all. Alternatively, com-
puting the Hessian to obtain confidence bounds is
not reliable when some parameters are close to the
boundaries of the parameter space see (Chapter 3
in Ref. 9), which is the case here for two parame-
ters. However, we can still point out that the state
0 corresponds to a smaller probability of contamina-
tion than when the chain is in state 1. Expression of
A suggests the following interpretation for the two
hidden states: one corresponding to a “clean” sta-
tus with associated zero state dependent probabil-
ity, and one “contaminated” status with a positive
value for the probability of failing the quarantine
test. The high value of the probability of remaining
in the clean state is very high, which accounts for the
small proportions of items failing the quarantine test.
For ergodic Markov chains, the stationary distribu-
tion gives the proportion of time the chain spends in
one state. It corresponds to 96.1% of the time for the
first state, and 3.9% of the time in the second state.
The goodness of fit of the HMM is discussed in the
Appendix.

An advantape of the HMM over the Markov
chain first lies in the interpretation of the hidden
states. The Viterbi algorithm provides a fast proce-
dure to estimate the most likely states of the Markov
chain that have given rise to the observations, given
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the parameter estimates.”) Denote the clean state
by C, and the contaminated or noncompliant state
by N. We present in Table V sections of the time
series under study, together with the estimated hid-
den states using the Viterbi algorithm. Periods of
high risk emerge more clearly from the hidden states:
clusters of 1s in the observation sequence are put
together in a unique N state, and we refer to this
importer as noncompliant during this time interval.
This suggests that quarantine services should moni-
tor more closely this importer during this period. The
hidden state associated with isolated 1sin the time se-
ries is classified as C since no high-risk period is de-
tected, and no immediate action needs to be taken.

The corresponding ROC and leakage curves are
presented in Fig. 2. The AUC for the Markov chain
is 0.687, and 0,772 for the HMM. It can be seen
from these curves that both the Markov chain and
the HMM help reduce leakage for this importer.
The HMM performs better compared to the Markov
chain. From the model estimates, the probability of
observing a 0 given a long sequence of Os has been
observed in the recent history is 0.9854. The ROC
curve obtained from the HMM model suggests in-
specting consignments when the probability of non-
compliance drops slightly below the latter value, that
is, pr = 0.985, where pr was defined in Section 2.4.
The non-Markovian nature of the HMM implies that
after a period of noncompliance, corresponding to
the N states estimated using Viterbi, it will take some
time for this probability to reach the threshold again.
Practically, this means that inspection services should
keep monitoring an importer for some time after a
pattern of contamination is detected, until a period
of low risk is reached again, corresponding to the
C state. The HMM provides guidance to estimate
how long this monitoring should take place. For the
threshold pr = 0.985, we infer from the ROC and
leakage curves that for the year 2011, this will induce
29% of false positive, 86% of true positives, and 14%
of leakage, corresponding to the inspection of 27 con-
signments out of 80, which represents a reduction of
intervention to about a third of the pathway being in-
spected. The evolution of the predicted probability of
compliance under the Markov chain and the HMM
models are given in Table VL.

4. DISCUSSION

We have developed and fitted a collection of
time series to border inspection data. When there
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Table V. Observation Sequence and Most Likely Hidden States Estimated Using the Viterbi Algorithin; Symbols C and N Correspond to
the Compliant and Noncompliant State, Respectively

Sequence

i 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0 0..
Hidden state s C C N N N N N N N N N N C C C C
Sequence ... 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 D..
Hidden state Y C c & & C C C N N N N N N C C
ROC curve Leakage curve
=
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1
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Fig. 2. ROC and leakage curves for the HMM (solid line) and the Markov chain (dashed line), with no covariates. Different sections of

these curves correspond to the threshold pr, not on the model complexity; see Section 2.4 for details. The black dots correspond to the
adopted strategy for pr = 0.985.

is evidence of serial dependence, the principal ben- As noted in the Section 1, for the reported exam-
efit of a HMM for this problem is that it provides ple, we assumed perfect detection, that is, inspection
a framework within which one can answer the ques- of a contaminated item would certainly detect the
tion: If we inspect an item and it is contaminated, how contamination. This is not a realistic assumption for
does that change our best estimate of the probabil- most inspection systems. Our model will extend to
ity that the next item will be contaminated? That is, inspection systems in which imperfect detection is
the HMM provides a way of using recent history to possible, and can do so explicitly so long as indepen-
flexibly allocate inspection resources among a suite dent estimates of the detection rate can be made.
of different pathways, depending on recent history. We modeled the outcome of inspection using a
The second benefit of HMM lies in the interpreta- conditional Bernoulli random variable. It is straight-
tion of the model and can help inspection services forward to model the outcome of inspection using
to estimate how long a specific importer or supplier two conditional Bernoulli random variables: the first
should be monitored after he was found noncompli- that the item is contaminated, say with probability p,
ant. For the two pathways considered here, there was and the second that the contamination is detected,
no evidence of systematic contamination at the path- say with probability 7. The random variable so mod-
way level. For the stockfeed pathway, we provided eled is identical to a single Bernoulli random variable
an example with the presence of contamination pat- with probability of success p x . Then the indepen-
terns, and explained how the proposed methodology dent estimate of the failure to detect contamination
can be used to help inspection decisions. can be integrated into the modeling framework.

N
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Table VI. Evolution of the Predicted Probability of Compliance
P(Yi+1 = 0| y14, #14) with Time, for a Fraction of the Year 2011

Status HMM Markov Chain
0 0.9854 0.9805
1 0.9854 0.9805
0 0.8399 03889
0 0.9149 0.9803
0 0.9541 0.9805
0 0.9720 0.9805
0 0.9798 0.9805
0 0.9831 0.9805
1 0.9846 0.9805
1 0.8210 0.3889
1 0.5474 0.3889
0 0.5319 0.3889
1 0.6384 0.9805
1 0.5345 0.3889
0 0.5316 0.3889
0 0.6380 0.9805
0 0.7638 0.9805

Note: The first column displays the status of the consignment. The
second column is the predicted probability without covariates, for
the HMM, and the third column for the Markov chain.

Alternatively, if the estimate is unknown, but as-
sumed to be constant across the pathways, then it can
be accounted for in the interpretation of the output,
but would likely not affect decisions such as whether
covariates are useful, and which covariates are best.
The current models are fit on the full observation
sequence. In the case of a policy change, any devia-
tion from 100% inspection will influence parameter
estimation and prediction on future shipments. Max-
imum likelihood can still be performed using the EM
algorithm, designed to estimate parameters for mod-
els with latent variables. Maximum likelihood esti-
mation is unaffected by missingness in the data; how-
ever, the estimates may be more biased and will be
less efficient relative to those fitted on the full data
set. For HMM, this amounts to including the miss-
ing observations with the unobserved hidden states.
An efficient way to compute the likelihood for HMM
when data are missing can be found, for example, in
Ref. 9; see Section 2.3.3. Since the one-step-ahead
probability is expressed as the ratio of likelihood, it
can still be quickly calculated when data are missing.
As pointed out by an anonymous reviewer, we
have elected to fit our models using symmetric objec-
tive or loss functions. The disadvantage of symmetry
in the loss function is that it implies that false pos-
itives are of equal importance as false negatives for
the purposes of parameter estimation. This implica-
tion is operationally unrealistic in most settings, and
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very much so in biosecurity, where false positives re-
sult in the unnecessary inspection of uncontaminated
consignments, whereas false negatives result in a po-
tential increase in the biosecurity risk. One way to ap-
proach the problem is to fit models using asymmetric
loss. An alternative is to reinterpret the results in the

light of this realization, supported by devices such as
ROC curves.
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APPENDIX

A.l. Mathematical Models

We provide some more details about the mod-
els, in particular the expression of their likelihood,
and the estimation of their parameters. We re-
call some notation. Observations are denoted Yj,; =
(Y,.... ), for i =1,...,n Covariates at time i
are denoted by z =(1,z1,...,zk), i=1,...,n
where K = () represents the total number of covari-
ates. Therefore, z;(1) =1 and %(j) = ,j_1, for j =
2,..., K+ 1. Letz = (21, .00 21).

A.1.1. Independent Model

The joint log likelihood under this model takes
the product form:
n
log P(Yin = y1in | 21) = ZIUE P(Yi=y|z).
im]
The probability of contamination p; = P(¥; =1 | ;)
at time i depends only on the value of the covari-
ates at time { through logit(p;) = «'%. The (K + 1)
parameters are estimated using maximum likelihood,
which requires solving a system of (K + 1) nonlinear
equations, with (K 4+ 1) unknown parameters,

S u(Nyi—p)=0, j=0,.. K+1,
i=1
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where the dependence on the model parameters is
via p;. An alternative to the independence model
would be the independence mixture model, where
observations are independent but depend on a hid-
den state; see, for example, Ref. 12 for an application
of mixture models to counts of movements by a fe-
tal lamb. We chose to compare the two alternative
models with the independence model instead, bear-
ing in mind that the primary goal is to detect patterns
of contamination.

A.1.2. Markov Chain

The joint log likelihood under this model is given
by:

IDEP(YIEH = ¥in | zl:n) =logP(Yi =y | 11)

+ ZIUE P(Y, =y | Yio1 = yic1, i)

i=2
Parameters are estimated using maximum likelihood,

by solving a nonlinear system of (2K + 2) equations
with (2K + 2) unknown parameters,

n—1

> 7(j)(vooi) — aoo(i)(woo(i) + vor (1)) =0,

im]
n—1

> z()(v10(i) — ao(i)(uin(i) + v (i) =0,

i=1
for j=0,...,K+1, where vj(i) =1 if there is a
transition from j to k at time i + 1, that is, y; = j,
Yiy1 = k, and v(i) = 0 otherwise.
A.1.3. HMMs

The joint log likelihood is:

log P(Ylm = ¥Yim Xin = X1y | zlm) = log P(X‘i =x | Z])

n
+ ZIOEP(Xi =X | Xic1 = X1, %)
i=2

n
+ EP(Y: =y|X=x.1%),

i=1
where x;, y; € (0, 1}. We use the depmixS4 package
in R to maximize the likelihood and estimate the
parameters.('”) There are (4K + 5) parameters to es-
timate, which includes the estimate of the initial dis-
tribution. Estimation of the parameters is performed
using the EM algorithm due to its scalability for
large data sets when fitting an HMM with two hid-
den states.
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A.2. Goodness of Fit

We discuss methods to assess the goodness of fit
for HMM for the model with no covariates. Meth-
ods of goodness of fit for HMM pgenerally assume
that the Markov chain is stationary. When estimating
the parameters of the HMM, one can either decide
to maximize the log likelihood given in Section 2.3.3
by taking the term P(¥] = y; | ;) to be the station-
ary distribution of the Markov chain, or by estimating
it directly. The depmixS4 package estimates the ini-
tial distribution, so that the chain is not assumed to
be in its stationary state at the origin. We argue here
that this is not an impediment to use goodness-of-fit
methods, as long as we discard the first few observa-
tions of the sequence.

Convergence of a Markov chain with transition
matrix A toward its stationary distribution occurs at
an exponential rate, which rate depends on the size
of the eigenvalues A; of A. For a stochastic matrix A,
1 is always an eigenvalue since Al = 1, with the right
eigenvector 1 with all entries equal to 1. If a station-
ary distribution 7 exists, then the left eigenvector is
m, since mA = nr. Moreover, if A is an irreducible,
aperiodic stochastic matrix, then A, = 1 satisfies A; >
|Xi],i # 1, for any other eigenvalue. For a two-by-two
matrix, then one can show that A" = 1r 4+ O(|A;3|"),
s0 that convergence toward the stationary distribu-
tion is at the exponential rate |A;|.

The estimated matrix A in 1 has eigenvalue Ay =
0.871. By discarding the first 40 samples, given that
23 is of order 1072, one can assume that the chain has
reached its stationary distribution. Checking for the
goodness of fit can be done on the remaining obser-
vation sequence. The value of A, provides guidance
to know how many samples to remove, which varies
from one pathway to another.

First, we check if the model captures the se-
rial dependence structure present in the data. In
Ref. 1, the author provides a graphical technique
for assessing the goodness of fit of a stationary
HMM by comparing the empirical m-dimensional
distribution, say F™ where n is the sample size,
with the estimated one, say F™. Here we fo-

cus on bivariate and trivariate distributions -

(m=2 and 3). The bivariate empirical distribu-
tion is defined as:

n—1

= 1
FX(n, ») = mzl(Yz =y =),
=1

for y; € {0, 1}, where 1(-) is the indicator function,
and the estimated bivariate distribution #2(y, y,) is
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given by:

1 1

Z E TiP(Y = y | X=k)P(Y < » | X=k),
k=0 ka=0

where the Markov chain has entries A = (a;) and
stationary distribution . The trivariate distributions
are defined in a similar way. Assuming observations
come from a stationary HMM with m-dimentional
distribution F™, it is shown in Ref. 1 that both the es-
timated and empirical distributions converge to F™
as n tends to co. Therefore, plotting one against
the other, the plot should line on a 45° line passing
through the origin. We present in the left panel of
Fig. Al a comparison of the m-multivariate distribu-
tions for m = 2 and m = 3. The model captures the
bivariate and trivariate distributions very well.

The serial dependence can also be addressed
via the autocorrelation function p. For a station-
ary binomial HMM with transition matrix A =
(aj), stationary distribution =, and state depen-
dent probabilities p = (po, p1), we get p(k) = wk(1 +
o)}, with w = agy — ayp, @ = (p' — 7 Pp") /(7 Pp' —
(zp')?), and P=(f °)09 The right panel in
Fig. Al compares p(k) for k=0,...,20 with the
sample autocorrelation function. The HMM captures
the decay of the autocorrelation well, with a particu-
larly good match at lags 1 and 2.

The empirical run length of contaminated items
arriving at the border is compared to the model pre-
diction. A run of s consecutive ones is defined to be
the observation of a 01 sequence followed by another
5 — 1 consecutive ones, and a zero, in that order. De-
note by § the length of a run of ones. The event
{§ = s} has probability g, = P(S = ) given by:

P(l’;+2 = F gy = 1, 1-VE+.~;+1 =0|Y; =0, K+1=1),

for s =1,2,.... An explicit expression for g, for
a stationary HMM can be found, for example, in
Ref. 13, Section 2.6.3. The empirical estimate for g, is
fs/f where fi. denotes the number of runs of s con-
secutiveonesand f = ¥, f. Table Al compares the
observed run-length distribution with the one pre-
dicted by the model for the HMM model fitted in
Section 2.3.3. There is a good match for s =1 and
2, with an outlier at 5 = 4. We expect a closer match
as the amount of historical data increases.

Decrouez and Robinson

bivariate and trivariate distributions

1 T T T T T T T T

0.86

085

0.84

083

092 - 1

0.91 " L s L \ L 1 i
091 082 093 084 085 086 087 088 089 1

carrelation funglion

1 F T T T T T T T T T 3

o ~ L ~

0 2 4 [ g 10 12 14 18 18 20
Fig. Al. The top panel presents the empirical (x-axis) versus pre-
dicted (y-axis) bivariate (crosses) and trivariate (circles) distribu-
tions. The bottom panel displays the estimated (dashed line) ver-
sus predicted (solid line) autocorrelation function. The observa-

tion sequence corresponds to a specific importer from the stock-
feed pathway, presented in Section 3.2.’

Table Al. Observed Versus Predicted Run-Length Distribution
of Ones, P(§ =5)

§ 1 2 3 4 5 6
Predicted 0738 0141 0064 0030 0014 0.007
distribution g;

Empirical 0.727 0.091 0 0.182 0 0
distribution

fIf




Time-Series Models for Inspection Data

REFERENCES

1.

Elliston L, Yainshet A, Hinde R. Karnal bunt: The regional
economic effects of a potential incursion. ABARE, eReport
04.4, prepared for Plant Health Australia, Canberra, 2004,

- Chen X, Cheng J, Xie M. A penalized regression approach

in detection of nuclear materials in shipment to the United
States, Joint Statistical Meetings, Vancouver, 2010,

. Rabiner LR. A tutorial on hidden Markov models and se-

lected applications in speech recognition. Praceedings of the
IEEE, 1989, 77:257-286.

. Albert PS. A two-state Markov mixture model for a time

series of epileptic seizure counts, Biometrics, 1991: 47:1371-
1381,

- Leroux BG, Puterman ML. Maximum-penalized-likelihood

estimation for independent and Markov-dependent mixture
models. Biometrics, 1992, 48:545-558.

. Krogh A, Brown M, Mian IS, Sjélander K, Haussler D,

Hidden Markov models in computational biology: Applica-
tions to protein modeling, Journal of Molecular Biology, 1994,
235:1501-1531.

- Dutilh G, Wagenmakers EJ, Visser I, van der Maas HLI, A

phase transition model for the speed accuracy trade-off in

10.

11.
12.

13.

14,

15.

2153

response time experiments. Cognitive Science, 2011, 35:211-
250.

. Visser I, Raijmakers MEJ, van der Maas HLI. Hidden Markav

models for individual time series. Pp. 269-289 in Valsiner I,
Molenaar PCM, Lyra MCDP, Chaudhary N (eds). Dynamic
Process Methodology in the Social and Developmental Sci-
ences. New York, Springer, 2009.

. Zucchini W, MacDonald IL. Hidden Markov Models for Time

Series, An Introduction Using R. Boca Ratan, FL: Chapman
and Hall, 2009.

Beale R, Fairbrother J, Inglis A, Trebeck D. One Biosecurity;
A Working Partnership. Commonwealth of Australia, 2008.
DAFF Reform of Australia’s biosecurity system, CC BY 3.0.
Efron B, Tibshirani RJ. An Introduction to the Bootstrap.
New York: Chapman & Hall, 1993.

Visser I, Speekenbrink M. depmixS4: An R package for hid-
den Markov models. Journal of Statistical Software, 2010
36:1-21.

Altman RM. Assessing the goodness-of-fit of hidden Markov
madels. Biometrics, 2004; 60:444—450,

MacDonald IL, Zucchini W. Hidden Markov and Other Mod-
els for Discrete-Valued Time Serics. New York: Chapman and
Hall, 1997,

]



