# Phytosanitary procedures Procédures phytosanitaires

# Sampling of consignments for visual phytosanitary inspection

# Specific scope

This standard describes the statistical basis of sampling for visual phytosanitary inspection of consignments.

# Specific scope

First approved in 2005-09.

# Introduction

Inspection of consignments of plant and plant products moving in international trade is an essential tool for management of pest risks and is the most frequently used phytosanitary procedure worldwide, for both import and export. Article VI of the New Revised Text of the IPPC states that each contracting party shall make arrangement for phytosanitary certification, with the objective of ensuring that exported plants and plant products and other regulated articles are in conformity with the certifying statements of the phytosanitary certificate. The certifying statements in the models set out in the annex of the New Revised Text of the IPPC are:

For the phytosanitary certificate 'This is to certify that the plants, plant products or other regulated articles described herein have been inspected and/or tested according to appropriate official procedures and are considered to be free from the quarantine pests specified by the importing contracting party and to conform with the current phytosanitary requirements of the importing contracting party, including those for regulated non-quarantine pests'.

For the phytosanitary certificate for re-export: 'This is to certify that the plants, plant products or other regulated articles ... are considered to conform with the current phytosanitary requirements of the importing contracting party, and that during storage ... the consignment has not been subjected to the risk of infestation or infection'.

From these statements it can be concluded that it is the responsibility of the exporting country (where appropriate the country of re-export) to verify that the plants, plant products or other regulated articles comply with the phytosanitary requirements of the importing country before issuance of a phytosanitary certificate (see also *ISPM* no. 7 Export Certification System,

1997). Import inspection is then a control procedure performed by the importing country to verify the compliance of the consignment with the appropriate phytosanitary requirements.

An inspection may lead to actions such as:

- refusal to issue a Phytosanitary Certificate for a consignment (or part of a consignment) intended to be exported,
- refusal of entry, detention, treatment, destruction or removal from the territory of the importing country for a consignment (or part of a consignment) at import.

Thus it is important that the inspection methodology (including the sampling procedures) used by NPPOs should be documented and transparent.

# Phytosanitary inspection

In ISPM no. 5 Glossary of Phytosanitary terms, inspection is defined as 'Official visual examination of plants, plant products or other regulated articles to determine if pests are present and/ or to determine compliance with phytosanitary regulation'. Pre-export inspection as well as import inspection often refers to consignments. As defined in ISPM no. 5 Glossary of Phytosanitary terms, a consignment is 'a quantity of plants, plant products and/or other articles being moved from one country to another and covered, when required, by a single phytosanitary certificate (a consignment may be composed of one or more commodities or lots)'. A lot is defined as 'a number of units of a single commodity, identifiable by its homogeneity of composition, origin, etc., forming part of a consignment'. Where consignments are composed of lots, the phytosanitary inspection should be performed on the basis of identifiable lots, not consignments, and the criteria used to distinguish lots should be consistent for similar consignments. Phytosanitary inspection of imported consignments may be carried out at

reduced frequency if experience gained from earlier introductions of plants, plant products or other articles of the same origin indicates that the articles in the consignment or lot are likely to comply with the phytosanitary import requirements of the country concerned.

Visual examination is a common practice for the detection of pests that are visually identifiable, or whose signs or symptoms are easily distinguishable. It is also a common procedure for verification of compliance with specific phytosanitary requirements (e.g. freedom from soil, packaging requirements, dormancy...). It is often not feasible to inspect every item in a consignment, so phytosanitary inspection is mainly based on sampling. Samples are used to draw inferences on the phytosanitary status of the whole consignment.

# Sampling of consignments or lots

#### Sampling for phytosanitary inspection of consignments

Sampling for phytosanitary inspection of consignments or lots is a form of 'discovery sampling'. Samples are taken from a finite population (the consignment or lot) without replacement of the units selected<sup>1</sup>. The consignment or lot is rejected if one or more defects are detected in the sample. Defects in the case of a phytosanitary inspection means:

- presence of quarantine pests
- presence of regulated non-quarantine pests above a prescribed tolerance level of infestation in the consignment
- presence of signs or symptoms of regulated pests indicating non-compliance with phytosanitary requirements
- evidence of non-compliance with phytosanitary requirements (such as soil on roots when soil freedom is required).

Rejection in the case of a phytosanitary inspection means that the consignment (or lot) from which the sample has been taken may be submitted to phytosanitary action.

#### Information provided by sampling

Sampling can never prove that a pest is truly absent. Inspection based on sampling can only demonstrate that the frequency of infestation is below a specified level or within a specified range, with a known level of confidence. Sampling to identify defects is common practice in industry and statistical tools exist to determine the size of samples.

# Elements to be considered in determining sample size

#### Lot size

The lot size is a variable that cannot be controlled by the NPPO.

#### Level of confidence

This confidence level corresponds to the percentage of success in discovering a defect. Sampling plans may be specified in relevant phytosanitary procedures for consignment inspection. Each sampling plan has a level of confidence which should be set in advance (commonly 99% for plants for planting and between 80 and 95% for fruits and vegetables or cut flowers; guidance is provided in specific commodity procedures). Large sample sizes are required to achieve a high level of confidence. These are often difficult to manage.

#### Infestation level in the consignment

The infestation level is defined as the percentage or proportion of infested units in the consignment or lot. The infestation level of the consignment is not likely to be known (furthermore, it is expected to be zero in the case of quarantine pests). The level of infestation to be detected should be fixed by the NPPO so that a sampling regime can be established. Commonly used levels of infection to be detected are between 0.1% and 10% depending mainly on the commodity and its intended use. Lower values are fixed for plants for planting (usually less than 1%), than for fruits and vegetables (between 5 and 10%).

#### Distribution of the pest in the consignment or lot

There is usually no information on the distribution of the pest in a consignment, though it may be influenced by the biology of the pest concerned, which should be taken into account as far as possible in deciding on the sampling methods to be used. In the case of large consignments or lots, it can be considered that the commodity has been sufficiently mixed to be considered homogeneous. As a consequence, the hypothesis that the distribution of the pest in the consignment or lot is homogeneous can be made and binomial-based sampling can be used. When the distribution of the pest is presumed to be aggregated, beta binomial-based sampling is preferable.

#### Determination of the sample size

Inspection of a fixed proportion of the consignment or lot is not always the most effective sampling method (in particular, for small consignment or lots, see Table 1). Discovery sampling follows statistical laws that depend on the size of the inspected consignment or lot and the potential distribution of the pest in the consignment or lot.

# Homogeneous distribution of the pest in the consignment or lot

In the case of large consignments or lots, and when the sample size is below 5% of the consignment or lot, sampling is based on the binomial distribution (see the Appendix). The sample size is independent of the consignment or lot size, as it is considered

<sup>&</sup>lt;sup>1</sup>Sampling without replacement does not mean that the selected item cannot be returned to consignments (except for destructive sampling), it just means that the inspector should not return it before selecting the next items.

| Boxes on truck | Нуре             | ergeometric-based sampling              | Fixed sampling rate (2%) |                                         |  |  |
|----------------|------------------|-----------------------------------------|--------------------------|-----------------------------------------|--|--|
|                | Boxes to inspect | Probability of detecting infested cargo | Boxes to inspect         | Probability of detecting infested cargo |  |  |
| 10             | 10               | 1                                       | 1                        | 0.100                                   |  |  |
| 50             | 22               | 0.954                                   | 1                        | 0.100                                   |  |  |
| 100            | 25               | 0.952                                   | 2                        | 0.190                                   |  |  |
| 200            | 27               | 0.953                                   | 4                        | 0.344                                   |  |  |
| 300            | 28               | 0.955                                   | 6                        | 0.469                                   |  |  |
| 400            | 28               | 0.953                                   | 8                        | 0.570                                   |  |  |
| 500            | 28               | 0.952                                   | 10                       | 0.651                                   |  |  |
| 1000           | 28               | 0.955                                   | 20                       | 0.878                                   |  |  |
| 1500           | 29               | 0.954                                   | 30                       | 0.958                                   |  |  |
| 3000           | 29               | 0.954                                   | 60                       | 0.998                                   |  |  |

Table 1 Sampling strategies to examine commodities assuming 10% of the boxes have an infested commodity unit (from RC Venette et al., 2002)

Table 2(a) General sampling tables: sample size for visual inspection (homogeneous distribution of the pest in the consignment or lot)

| Number of units<br>in consignment | P = 80% (confidence level)<br>% level of infestation |    |     |      |      |    |     |     | P = 90% (confidence level)<br>% level of infestation |      |  |
|-----------------------------------|------------------------------------------------------|----|-----|------|------|----|-----|-----|------------------------------------------------------|------|--|
|                                   | 5                                                    | 2  | 1   | 0.5  | 0.1  | 5  | 2   | 1   | 0.5                                                  | 0.1  |  |
| 100                               | 27                                                   | 56 | 80  | -    | -    | 37 | 69  | 90  | -                                                    | -    |  |
| 200                               | 30                                                   | 66 | 111 | 160  | _    | 41 | 87  | 137 | 180                                                  | -    |  |
| 300                               | 30                                                   | 70 | 125 | 240* | _    | 42 | 95  | 161 | 270*                                                 | -    |  |
| 400                               | 31                                                   | 73 | 133 | 221  | -    | 43 | 100 | 175 | 273                                                  | -    |  |
| 500                               | 31                                                   | 74 | 138 | 277* | _    | 43 | 102 | 184 | 342*                                                 | -    |  |
| 600                               | 31                                                   | 75 | 141 | 249  | -    | 44 | 104 | 191 | 321                                                  | -    |  |
| 700                               | 31                                                   | 76 | 144 | 291* | -    | 44 | 106 | 196 | 375*                                                 | -    |  |
| 800                               | 31                                                   | 76 | 146 | 265  | _    | 44 | 107 | 200 | 349                                                  | -    |  |
| 900                               | 31                                                   | 77 | 147 | 298* | -    | 44 | 108 | 203 | 394*                                                 | -    |  |
| 1 000                             | 31                                                   | 77 | 148 | 275  | 800  | 44 | 108 | 205 | 369                                                  | 900  |  |
| 2 000                             | 32                                                   | 79 | 154 | 297  | 1106 | 45 | 111 | 217 | 411                                                  | 1368 |  |
| 3 000                             | 32                                                   | 79 | 156 | 305  | 1246 | 45 | 112 | 221 | 426                                                  | 1607 |  |
| 4 000                             | 32                                                   | 79 | 157 | 309  | 1325 | 45 | 113 | 223 | 434                                                  | 1750 |  |
| 5 000                             | 32                                                   | 80 | 158 | 311  | 1376 | 45 | 113 | 224 | 439                                                  | 1845 |  |
| 6 000                             | 32                                                   | 80 | 159 | 313  | 1412 | 45 | 113 | 225 | 443                                                  | 1912 |  |
| 7 000                             | 32                                                   | 80 | 159 | 314  | 1438 | 45 | 114 | 226 | 445                                                  | 1962 |  |
| 8 000                             | 32                                                   | 80 | 159 | 315  | 1458 | 45 | 114 | 226 | 447                                                  | 2000 |  |
| 9 000                             | 32                                                   | 80 | 159 | 316  | 1474 | 45 | 114 | 227 | 448                                                  | 2031 |  |
| 10 000                            | 32                                                   | 80 | 159 | 316  | 1486 | 45 | 114 | 227 | 449                                                  | 2056 |  |
| 20 000                            | 32                                                   | 80 | 160 | 319  | 1546 | 45 | 114 | 228 | 455                                                  | 2114 |  |
| 30 000                            | 32                                                   | 80 | 160 | 320  | 1567 | 45 | 114 | 229 | 456                                                  | 2216 |  |
| 40 000                            | 32                                                   | 80 | 160 | 320  | 1577 | 45 | 114 | 229 | 457                                                  | 2237 |  |
| 50 000                            | 32                                                   | 80 | 160 | 321  | 1584 | 45 | 114 | 229 | 458                                                  | 2250 |  |
| 60 000                            | 32                                                   | 80 | 160 | 321  | 1588 | 45 | 114 | 229 | 458                                                  | 2258 |  |
| 70 000                            | 32                                                   | 80 | 160 | 321  | 1591 | 45 | 114 | 229 | 458                                                  | 2265 |  |
| 80 000                            | 32                                                   | 80 | 160 | 321  | 1593 | 45 | 114 | 229 | 459                                                  | 2269 |  |
| 90 000                            | 32                                                   | 80 | 160 | 321  | 1595 | 45 | 114 | 229 | 459                                                  | 2273 |  |
| 100 000                           | 32                                                   | 80 | 160 | 321  | 1596 | 45 | 114 | 229 | 459                                                  | 2276 |  |
| 200 000                           | 32                                                   | 80 | 160 | 321  | 1603 | 45 | 114 | 229 | 459                                                  | 2289 |  |

that the global infestation level in large lots remains the same when individual units are sampled.

In the case of small consignments or lots, i.e. when more than 5% of the consignment or lot will be inspected, the infestation level cannot be considered to be constant when individual units are sampled (the probability of finding an infested unit changes with each unit sampled). In such cases the statistical model used to determine the sample size is the hypergeometric distribution (see the Appendix).

The sampling size indicated in Tables 2(a) and 2(b) results from calculations based on the two models described above.

# Aggregated spatial distribution of the pest in the consignment or lot

Most pest populations are aggregated or dispersed in the field. Because commodities may be harvested and packed immediately after harvest, the distribution of infested units in a

| Number of units<br>in consignment | P = 95% (confidence level)<br>% level of infestation |     |     |      |      | P = 99% (confidence level)<br>% level of infestation |     |     |      |      |
|-----------------------------------|------------------------------------------------------|-----|-----|------|------|------------------------------------------------------|-----|-----|------|------|
|                                   | 5                                                    | 2   | 1   | 0.5  | 0.1  | 5                                                    | 2   | 1   | 0.5  | 0.1  |
| 25                                | 23                                                   | _   | _   | -    | -    | 25                                                   | _   | -   | -    | -    |
| 50                                | 35                                                   | 48  | -   | -    | -    | 42                                                   | 50  | -   | -    | -    |
| 100                               | 45                                                   | 78  | 95  | -    | -    | 59                                                   | 90  | 99  | -    | -    |
| 200                               | 51                                                   | 105 | 155 | 190  | -    | 73                                                   | 136 | 180 | 198  | -    |
| 300                               | 54                                                   | 117 | 189 | 285* | -    | 78                                                   | 160 | 235 | 297* | -    |
| 400                               | 55                                                   | 124 | 211 | 311  | -    | 81                                                   | 174 | 273 | 360  | -    |
| 500                               | 56                                                   | 129 | 225 | 349* | -    | 83                                                   | 183 | 300 | 421* | _    |
| 600                               | 56                                                   | 132 | 235 | 379  | -    | 84                                                   | 190 | 321 | 470  | -    |
| 700                               | 57                                                   | 134 | 243 | 442* | -    | 85                                                   | 195 | 336 | 548* | _    |
| 800                               | 57                                                   | 136 | 249 | 420  | _    | 85                                                   | 199 | 349 | 546  | -    |
| 900                               | 57                                                   | 137 | 254 | 474* | -    | 86                                                   | 202 | 359 | 614* | -    |
| 1 000                             | 57                                                   | 138 | 258 | 450  | 950  | 86                                                   | 204 | 368 | 601  | 990  |
| 2 000                             | 58                                                   | 143 | 277 | 517  | 1553 | 88                                                   | 216 | 410 | 737  | 1800 |
| 3 000                             | 58                                                   | 145 | 284 | 542  | 1895 | 89                                                   | 220 | 425 | 792  | 2353 |
| 4 000                             | 58                                                   | 146 | 288 | 556  | 2108 | 89                                                   | 222 | 433 | 821  | 2735 |
| 5 000                             | 59                                                   | 147 | 290 | 564  | 2253 | 89                                                   | 223 | 438 | 840  | 3009 |
| 6 000                             | 59                                                   | 147 | 291 | 569  | 2358 | 90                                                   | 224 | 442 | 852  | 3214 |
| 7 000                             | 59                                                   | 147 | 292 | 573  | 2437 | 90                                                   | 225 | 444 | 861  | 3373 |
| 8 000                             | 59                                                   | 147 | 293 | 576  | 2498 | 90                                                   | 225 | 446 | 868  | 3500 |
| 9 000                             | 59                                                   | 148 | 294 | 579  | 2548 | 90                                                   | 226 | 447 | 874  | 3604 |
| 10 000                            | 59                                                   | 148 | 294 | 581  | 2588 | 90                                                   | 226 | 448 | 878  | 3689 |
| 20 000                            | 59                                                   | 148 | 296 | 589  | 2781 | 90                                                   | 227 | 453 | 898  | 4112 |
| 30 000                            | 59                                                   | 148 | 297 | 592  | 2850 | 90                                                   | 228 | 455 | 905  | 4268 |
| 40 000                            | 59                                                   | 149 | 297 | 594  | 2885 | 90                                                   | 228 | 456 | 909  | 4348 |
| 50 000                            | 59                                                   | 149 | 298 | 595  | 2907 | 90                                                   | 228 | 457 | 911  | 4398 |
| 60 000                            | 59                                                   | 149 | 298 | 595  | 2921 | 90                                                   | 228 | 457 | 912  | 4431 |
| 70 000                            | 59                                                   | 149 | 298 | 596  | 2932 | 90                                                   | 228 | 457 | 913  | 4455 |
| 80 000                            | 59                                                   | 149 | 298 | 596  | 2939 | 90                                                   | 228 | 457 | 914  | 4473 |
| 90 000                            | 59                                                   | 149 | 298 | 596  | 2945 | 90                                                   | 228 | 458 | 915  | 4488 |
| 100 000                           | 59                                                   | 149 | 298 | 596  | 2950 | 90                                                   | 228 | 458 | 915  | 4499 |
| 200 000                           | 59                                                   | 149 | 298 | 597  | 2972 | 90                                                   | 228 | 458 | 917  | 4551 |

Table 2(b) General sampling tables: sample size for visual inspection (homogeneous distribution of the pest in the consignment or lot)

Note: Some scenarios presented in the table result in one-half of a unit being infested (for example, 300 units with 0.5% infestation corresponds to 1.5 infested units in the shipment). This is not possible for an individual lot (whole number of units are infested). As a result, values are given for the lower number. The result is that the sampling intensity goes up slightly and may be greater for consignments or lots where the number of infected units is rounded down than for a larger consignment or lot where a larger number of infected units are calculated without rounding (e.g. compare results for 700 and 800 units). It also means that a slightly lower proportion of infested units may be detected than the proportion indicated by the table, or that such infestation is more likely to be detected. These values are marked with an asterisk (\*) in the Table.

Some of the scenarios that are presented are not possible (less than one unit infested), and these are marked with a dash (-) in the Table.

consignment or lot may not be homogeneous. Sampling plans can be adjusted to compensate for aggregated spatial distribution. Aggregation of infested units of a commodity will always lower the likelihood of finding an infestation (Fig. 1). In such cases, in theory, Tables 2(a) and 2(b) should not be used. Instead, a calculation of sample size should be performed following the advice in the Appendix. However, this is not easy to undertake in practice and Tables 2(a) and 2(b) can still be followed, keeping in mind that the confidence level of the sampling will be reduced (Fig. 1).

#### How to sample?

To obtain a statistically valid estimate that the level of infestation in the consignment or lot does not exceed the possible infestation level determined by the NPPO, samples should be taken at random, preferably using random-number tables. Inspections that only target the accessible part of the consignment (tailgate inspection) should be avoided.

For quarantine pests, it is important to maximize the chance of detection by targeting the sample wherever possible at those plants or units which are most likely to be carrying the organism (e.g. by focusing on wet patches of potato bags or on wet sawn wood). This is often based on the experience of the inspector. The inspection procedure, including the collecting and examination of the sample(s), should aim to assure a consistent level of efficacy.

## References

Anon (1996) Harmonized Import Inspection Procedures on Consignments of Third Country Origin. Commission of the European Union, Brussels (BE).

ICPM (1997) Export certification system. *International Standard for Phyto*sanitary Measures no. 7. FAO, Rome (IT).



**Fig. 1** Required sample size (m) to detect one or more individuals with 95% confidence as affected by the proportion of a commodity that is infested, batch size, and the degree of aggregation ( $\theta$ ; if  $\theta = 0$ , no aggregation), assuming beta binomial statistics apply (from Venette *et al.*, 2002).

ICPM (2004) Glossary of Phytosanitary Terms. International Standard for Phytosanitary Measures no. 5. FAO, Rome (IT).

Venette RC, Moon RD & Hutchinson WD (2002) Strategies and statistics of sampling for rare individuals. *Annual Review of Entomology* 47, 143–174.Ward MG (1994) Sampling to make decisions in the Plant Health and Seeds

Inspectorate. Aspects of Applied Biology 37, 217–224.

# Appendix

#### Sampling of large consignments: binomial based sampling

For large consignments sufficiently mixed, the likelihood of finding an infested unit is approximated by simple binomial statistics. The sample size is less than 5% of the consignment or lot size. The probability of observing *X* infested units in a sample of *n* units is given by:

$$P(X=1) = \left(\frac{n}{i}\right) f^i (1-f)^{n-i}$$

*f* is the average proportion of infested units (infestation level) in the consignment, and P(X = i) is the probability of observing *i* infested units in the sample (the Confidence Level referred to in Table 2 corresponds to (1 - P(X = i)).

For phytosanitary purposes, the probability of not observing an infested unit in a sample of n units is given by

$$P(X = 0) = (1 - f)^n$$

The probability of observing at least one infested unit is then:

$$P(X > 0) = 1 - (1 - f)^n$$

This equation can be rearranged to determine n

$$n = \frac{\ln[1 - P(X > 0)]}{\ln(1 - f)}$$

The size of the consignment can be determined with this equation when the infestation level (f) and the confidence level (1 - P(X > 0)) are fixed by the NPPO.

# Sampling of small consignments: hypergeometric-based sampling

The hypergeometric distribution is appropriate for determining the probability of finding a pest in a relatively small consignment. A consignment is considered as small when the sample size is more than 5% of the consignment or lot size. In this case, when an unit is sampled from the consignment, the probability of finding an infested unit in the next unit selected changes.

### Comparison between fixed sampling and hypergeometricbased sampling

As shown in Table 1, sampling a fixed proportion of a consignment may provide too few or too many observations to achieve a desired probability of detection.

The probability of detecting *i* infested units in a sample is given by:

$$P(X = i) = \frac{\left(\frac{X}{i}\right)\left(\frac{N - X}{n - i}\right)}{\left(\frac{N}{n}\right)}$$

Where:

$$\left(\frac{a}{b}\right) = \frac{a!}{b!(a-b)!}$$

P(X = i) is the probability of observing *i* infested units in the sample (the Confidence Level referred to in appendix 2 corresponds to: (1 - P(X = i)))

X = number of infested units in the consignment or lot i = number of infested units in the sample

N = number of units in the consignment (size of the consignment or lot)

n = number of units in the sample (sample size).

Solving the equation to determine n is difficult arithmetically but can be done by approximation or through maximum likelihood estimation. It has been done for different consignment or lot sizes, confidence levels and possible infestation levels in Tables 2(a) and 2(b).

#### Sampling for pests with an aggregated distribution: betabinomial based sampling

In the case of aggregated special distribution, sampling plans can be adjusted to compensate for aggregation. For this adjustment to apply, it should be assumed that the commodity is sampled in batches (e.g. boxes) and that each unit in a chosen batch is examined (cluster sampling). In such cases, f is no longer constant across all clusters but will follow a beta density function.

$$P(X=i) = \left(\frac{n}{i}\right) \frac{\prod_{j=0}^{i-1} (f+j\theta) \prod_{j=0}^{n-i-1} (1-f+j\theta)}{\prod_{j=0}^{n-1} (1+j\theta)}$$

f is the average proportion of infested units (infestation level) in the consignment

P(X = i) is the probability of observing *i* infested units in a batch

n = number of units in a batch

 $\Pi$  is the product function

 $\theta$  provides a measure of aggregation for the *j*th batch

 $\theta$  is  $0 < \theta < 1$ .

Phytosanitary sampling is often more concerned with the probability of not observing an infested unit after inspecting several batches. For a single batch, the probability that x = 0 is

 $P(X = 0) = 1 - \prod_{j=0}^{n-1} (1 - f + j\theta)/(1 + j\theta)$  and the probability that each of several batches has no infected unit, Pr(X = 0), equals  $P(X = 0)^m$ , where *m* is the number of batches. When *f* is low, equation 1 can be estimated by  $P(X = 0) \approx (1 - n\theta)^{-(f/\theta)}$ 

 $Pr(X = 0) \approx (1 - n\theta)^{-(mf/\theta)}$ 

 $I(X = 0) \approx (I + h0)^{(m,0)}$ 

The probability of observing one or more infected unit is given by 1 - Pr(X = 0).

This equation can be rearranged to determine m

$$m = \frac{-\theta}{f} \left[ \frac{\ln(1 - P(X > 0))}{\ln(1 + n\theta)} \right]$$

When the degree of aggregation and the level of confidence are fixed, the size of the sample can be determined.

The effect of aggregation can be seen in Fig. 1.