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1. INTRODUCTION 
Robert Griffin1 

1. National Coordinator for Agriculture Quarantine Inspection USDA, APHIS, PPQ – Retired 

All National plant protection organizations (NPPOs) share the same objectives regarding their 

international framework of obligations as outlined in the World Trade Organization’s Agreement 

on the Application of Sanitary and Phytosanitary Measures (WTO-SPS) and the International Plant 

Protection Convention (IPPC): free, fair, and safe trade.  Inspection plays a central role in meeting 

these objectives but practicing inspection in a risk-based way is only beginning to be understood 

and accepted.  One reason for this is the historical focus on inspection as the primary strategy for 

pest exclusion with little emphasis on its role as a source of information to monitor pest risk and 

facilitate analysis that can support risk-based strategies. It is clear from Part I of this manual (Click 

here) that risk-based sampling (RBS) provides the means to maximize the effectiveness of 

inspection for pest exclusion while also promoting a fair and technically defendable trade 

environment. In addition, RBS has the great benefit of providing powerful data for analyses that 

help NPPOs understand the relationship of risk to resources and the opportunities for 

adjustments that can improve their approach to risk management.  

The best RBS design begins with a good understanding of the individual operational situation 

where it will be applied. Statistical and analytical tools are then used by the NPPO to determine 

the best RBS design to meet the desired scope, available resources, and expected outcomes for 

that country.  There is a growing store of experiences and information that can shed light on 

many aspects of RBS beyond its basic principles. Part II of this manual is a collection of tools and 

information that draw from the experience of NPPOs and experts to provide additional detail on 

RBS inspection designs. This compilation of resources offers another level of insight with 

information, interpretations, and recommendations that may be helpful to those searching for 

greater depth in their understanding of RBS.   

The process of building RBS capacity may be as simple or complex as the NPPO is comfortable 

undertaking. Although the fundamentals of RBS are relatively simple, their application in practice 

can be challenging. Risk-based sampling requires some baseline understanding of statistics 

consistent with all scientific endeavors, including the discipline of risk management. A substantial 

portion of the RBS manual Part II is devoted to statistical elements that go beyond what is 

covered in the RBS manual Part I or in the international standards for phytosanitary measures 

(ISPMs) that provide inspection guidance. Some of this information can be directly useful to those 

who are fluent in statistics. NPPOs are encouraged to take advantage of the resources provided 

in Part II but also seek and build statistical capacity as needed to address their unique, individual 

RBS implementation challenges. 

https://nappo.org/english/learning-tools/Resources-and-Learning-Tools-for-Risk-Based-Sampling/manual-Part-1
https://nappo.org/english/learning-tools/Resources-and-Learning-Tools-for-Risk-Based-Sampling/manual-Part-1
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Phytosanitary inspection of Hass avocados from Peru. 

Source - https://www.senasa.gob.pe/senasacontigo/ica-inspeccion-fitosanitaria-de-palta-hass-para-exportacion-a-
china/ 

 
 

 
Phytosanitary inspection of chrysanthemum flower bunches from Colombia.  

Source - https://www.ica.gov.co/noticias/ica-exporta-pompon-hacia-chile-certificados 
 
 

https://www.senasa.gob.pe/senasacontigo/ica-inspeccion-fitosanitaria-de-palta-hass-para-exportacion-a-china/
https://www.senasa.gob.pe/senasacontigo/ica-inspeccion-fitosanitaria-de-palta-hass-para-exportacion-a-china/
https://www.ica.gov.co/noticias/ica-exporta-pompon-hacia-chile-certificados
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2. SPECIAL TOPICS 
Robert Griffin1 

1. National Coordinator for Agriculture Quarantine Inspection USDA, APHIS, PPQ – Retired 

Every country has different experiences with the implementation of RBS. The range of 

experiences to date have helped identify aspects of implementation that deserve special 

attention.  The discussions that follow, aim to provide insight into practical issues that have 

drawn special attention for the challenges they pose. 

2.1  Political commitment 

Chapter 5, section 5.1 of the RBS manual Part I, states that “The first prerequisite for successful 

implementation of RBS is the combination of training and commitment to ensure that the 

concepts are understood and supported”. It is important to reemphasize this point and add that 

a crucial aspect of this commitment is strong, consistent support from NPPO leadership. The first 

reaction to suggested change in inspection approaches/designs by the responsible workforce 

(inspectors) is often resistance to change, 

especially if it seems counterintuitive on 

the surface. Stakeholders may also resist 

this change as they experience 

adjustments in rates of regulatory actions 

and in resource allocation. Additionally, 

the shift from long-practiced inspection 

methods and beliefs is likely to result in 

challenges, mistakes, and frustrations that 

make it tempting to reverse course.  

Consistent encouragement and 

demonstrated determination by NPPO leadership is necessary to stay the course.  The final goal 

in the journey towards implementing RBS should be to achieve the “tipping point” where 

experience leads to understanding its value, embracing it for its fairness and efficiency, and 

broadly accepting it as the best practice for technically justified risk management.  

2.2  Training 

Inspection is an acquired skill. As such, it requires training to understand its concepts as a first 

step and then practice applying these concepts as a second step. The best inspection training 

goes beyond sharing information including hands-on exercises and real/realistic situations that 

demonstrate the concepts using a variety of circumstances and data, to showing not only the 

The final goal in the journey towards 

implementing RBS should be to achieve the 

“tipping point” where experience leads to 

understanding its value, embracing it for its 

fairness and efficiency, and broadly accepting it 

as the best practice for technically justified risk 

management.   



Risk Based Sampling 
 

8 | P a g e  

 

benefits of RBS, but also its limitations. Finally, the consistent implementation of well-designed 

RBS programs is necessary to internalize best practices. 

2.3  Space and equipment 

Adequate time, lighting, space, and equipment are all factors that contribute to good inspection 

but for practical reasons may not be optimal at every NPPO. Recognizing that some shortcomings 

exist in almost every situation, inspection designs should take account of the effects of these 

shortcomings. For instance, pest interceptions may be expected to increase when better lighting, 

equipment, and inspection space is provided. Likewise, ensuring that inspectors have sufficient 

time for inspection results in better outcomes.   

 

It is often the case that there may be no change in the risk associated with the cargo, only a 

change in the conditions for pest detection that results in more or less pest interceptions. 

Whenever the question is raised about whether risk has changed, an evaluation of the conditions 

needs to be first considered to understand if the change is related to operational factors before 

any policy changes are implemented.    

2.4  Randomization 

A common limitation of inspection is sufficient time, equipment, and a secure space for unloading 

cargo to fully randomize the consignment before sampling. Random sampling is important from 

an operational standpoint for discovering differences in risk that may be associated with the 

cargo configuration. If samples are always taken from the rear of the container, the inspector is 

unable to gain insights into the characteristics of the cargo in other areas of the container.  This 

practice assumes homogeneity of the cargo but needs to be tested occasionally to verify.  

Likewise, randomization increases statistical confidence in the results of inspection. An 

alternative to random sampling every consignment is to randomize some subset of consignments 

that is practical (e.g., one out of every 30 

consignments) and then compare the 

inspection results to those obtained from 

non-random sampling to understand the 

variation in confidence. It is sometimes 

possible to take advantage of cargo 

devanning (=unloading) that might be 

required by Customs or other border agencies to gain access to cargo that is not normally 

available for inspection.  This argues for a high level of collaboration with other border agencies 

to coordinate inspection designs that take maximum advantage of opportunities to gather better 

information.  

Random sampling is important from an 

operational standpoint for discovering 

differences in risk that may be associated with 

the cargo configuration. 
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2.5  Selecting the appropriate sample unit  

Inspecting apple fruit in a consignment will not help with detecting pests present in the 

consignment’s wood packaging, or snails that may be attached to the outside of the container 

used to ship the apples. Every inspection needs to include an element of general examination for 

the detection of unexpected pests to complement the inspection designs for specific pests.  

Furthermore, the inspection designs for specific pests need to account for the type of pest and 

its behavior. For instance, pests that feed internally will require destructive sampling of individual 

fruit (cutting). However, the most appropriate sample unit for mobile pests, external feeders, 

and contaminants in fruits and vegetables is more likely to be individual packages (e.g., box, bag, 

tray, etc.). Bulk commodities like grain are usually sampled based on increments of weight or 

volume (e.g., kilograms, pounds, ounces, etc.). Selection of the appropriate sample unit requires 

thoughtful consideration and consistent application to ensure meaningful inspection results. The 

results of inspections based on boxes cannot be easily compared or combined with inspection 

results based on weight.   

2.6  Uncertainty 

Uncertainty includes both natural variability and error, and inspection has a mix of both types of 

uncertainty. Variability may be controlled up to a point but not eliminated. Errors can be 

corrected where they are discovered. Because inspection is a human activity, there will always 

be natural variability in the process and therefore in the results, and there will always be some 

level of error - both factors affect the efficacy of inspection. The few studies that exist on 

inspection efficacy show a wide range of results, varying from around 20% up to 80% depending 

on many factors (Gould, 1995). Interestingly, inspectors typically believe that inspection is highly 

effective but base this perception on their bias for detection where pests have been found 

before.  For this reason, new inspectors are often the ones that find new pests. Risk-based 

sampling designates inspection units without bias and requires the entire sample to be inspected.  

Both of these procedures increase the probability of detecting previously undetected pests and 

support better analysis by providing information on pest prevalence (number of pests in a 

sample).  

 

Aside from the uncertainty associated with efficacy, there is uncertainty associated with other 

statistical parameters of inspection. One obvious area of uncertainty is the confidence level. The 

statistical convention for confidence is 95%. If applied consistently, this means that 5 times out 

of 100, the results will be wrong. This is in addition to the uncertainty that comes from the 

tolerance we accept with sampling.  If sampling is designed to detect a 10% infestation level with 

95% confidence, then we not only have the possibility of 5% incorrect results, but we also have 

the uncertainty associated with the other 95% where it falls below the detection level of 10%.  
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The 10% may or may not be infested, but we have decided to live with the possibility that as 

much as 10% of pests are undetected because they fall under our tolerance threshold.  

 

In sum, there are many areas of uncertainty and the magnitude of uncertainty associated with 

inspection can be large and vary widely. For this reason, inspection must be designed and used 

carefully as a phytosanitary measure, recognizing that it provides limited precision for risk 

mitigation but can provide valuable information for improved overall risk management. 

2.7 Correlation of inspection variables 

The focus of analysis for RBS data will typically be the regulatory action rate for specific 

commodities from specific countries. This simple correlation of regulatory actions to 

commodity/country requires a limited data set with enough observations to be statistically 

significant (see also 2.8 below). Collecting additional data on other inspection variables greatly 

expands the possibilities for analysis, and such data is normally collected/available for imports.  

For instance, the regulatory action rate for a particular country/commodity may be related to a 

single producer in the country of origin. By collecting producer data, this relationship can be 

detected and more easily corrected. Likewise, it may be that regulatory actions on the same 

commodity from the same origin are different when processed at different ports or by different 

inspectors, or that these regulatory actions are more frequent at certain times of the year. A 

broad range of useful analyses can be done by correlating different inspection variables using 

RBS data because it is collected in a consistent way. The key is collecting data on inspection 

variables that serve a useful purpose for managing risk and not wasting time and resources 

collecting data that is not helpful for answering the questions that are important for risk and 

resource management.  

2.8  Singling, mingling, and commingling cargo 

Cargo configurations can include a mix of products/commodities, different packaging, and 

different configurations which can create challenges for RBS sampling. Since all possibilities 

cannot be anticipated for inspection designs, it is important to allow inspectors some flexibility 

to address these real-world challenges while also maintaining a high level of consistency during 

sampling.   

The most common cargo configuration is known as singling. A singled consignment is one where 

the commodity/product is homogeneous; all the product and packages are the same (Figure 1).  

The main challenge with singled consignments is identifying the sample unit when products have 

multiple packages (e.g., bags within boxes) or unusual packing that complicates sampling (e.g., 

trays, towers, bulk stacks). The key to sampling singled consignments is identifying the most 

appropriate and practical sample unit and then using it consistently. 
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Figure 1. Singled shipment which is comprised of a single taxon; the red dots represent the taxa in the shipment. 
Source: https://nappo.org/application/files/5415/8676/4129/RBS_Symposium_Proceedings_-10062018-e.pdf 

 

Mingled consignment configurations represent the next step in complexity. A mingled 

consignment is one where the product/commodity is the same within sample units but there is 

a mixture of products/commodities in the consignment (Figure 2). Imagine a consignment of cut 

flowers that contains both rose and carnation flowers. The primary challenge with mingled 

consignments is deciding whether to sample it as a single lot or divide the consignment according 

to the products and assign different sampling regimes to each. This decision will depend on the 

products/commodities in question and whether there is an expectation that each presents 

different risks. In the absence of experience or other information, both can be sampled together 

as they would be for a singled consignment until a difference is noted that justifies distinguishing 

one from the other. Another reason to sample differently may be concerns for a specific pest that 

is known to be associated with one product (rose flowers) and not the other. 

  

https://nappo.org/application/files/5415/8676/4129/RBS_Symposium_Proceedings_-10062018-e.pdf
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Figure 2. Mingled shipment; each colored dot represents a different taxon in the shipment. Source: 

https://nappo.org/application/files/5415/8676/4129/RBS_Symposium_Proceedings_-10062018-e.pdf 
 

Finally, a comingled consignment presents the most challenging situation. Comingled 

consignments have multiple products in each sample unit (Figure 3).  

 
Figure 3. Comingled shipment; each colored dot represents a different taxon in the shipment. Source: 

https://nappo.org/application/files/5415/8676/4129/RBS_Symposium_Proceedings_-10062018-e.pdf 

https://nappo.org/application/files/5415/8676/4129/RBS_Symposium_Proceedings_-10062018-e.pdf
https://nappo.org/application/files/5415/8676/4129/RBS_Symposium_Proceedings_-10062018-e.pdf
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Imagine for example a shipment of flower bouquets with mixed roses and carnations. Since 

different products in the same sample unit cannot be separated, the challenge with comingled 

consignments is deciding on the sample rate.  It is logical that the sample rate for the highest risk 

product would be selected, but this is likely to result in higher than usual interception rates on 

the lower risk products as a result of subjecting them to more rigorous inspection. These 

differences need to be taken into consideration when analyzing results and considering any 

changes in risk designations for the products in question.   

2.9 Interagency cooperation 

Phytosanitary authorities are not the only border agencies concerned with managing risk.  Pest 

risk is only one aspect of the broader concern for compliance with national import requirements 

and can often be a lower priority even for agricultural imports.   

 

Under the WTO Trade Facilitation Agreement (WTO-TF), which came into force in 2017, all WTO 

member countries have agreed that their national Customs Service will be the lead agency 

coordinating border operations and implementing risk-based policies. As countries adjust their 

national import designs to these relatively new obligations, there are multiple opportunities for 

NPPOs to redesign their border operations to gain future efficiencies. Two key areas to consider 

for RBS are data collection and randomizing cargo. 

 

In the case of data collection, the advantage provided by the WTO-TF comes from the single 

window concept and the move toward digital data. The single window brings all relevant 

information on a consignment together in a single entry, a single system, and in electronic format.  

The single window greatly simplifies the entry process for all trade and provides a much more 

efficient way for border agencies to manage the trade clearance process. The key for NPPOs will 

be to proactively work with their Customs service to design electronic systems that collect, store, 

and make available relevant information in the single window, including feedback mechanisms 

for identifying inspection specifications, regulatory actions, and consignment status.  

 

The point about randomizing cargo is important 

because it is often highly impractical to unload 

containerized cargo for a full random 

inspection. However, if devanning (=unloading) 

is coordinated with the Customs service and 

other border authorities, the opportunity for 

random phytosanitary inspections can be 

increased.  It is not likely that an inspection done for drugs or other prohibited articles will be 

Establishing devanning routines that are 

coordinated with NPPOs and other border 

agencies provides benefits to multiple agencies 

and reduces negative impacts on trade.     
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limited to samples taken from the rear of the container. Establishing devanning routines that are 

coordinated with NPPOs and other border agencies provides benefits to multiple agencies and 

reduces negative impacts on trade. 

2.10 Stakeholder communication 

The stakeholder base for border inspections is broad and diverse, but typically very focused on 

one thing: cargo clearance. Timely border clearance makes for efficient business processes and 

results in cost savings. Where RBS is concerned, it is crucial that stakeholders are informed about 

the advantages associated with its implementation, especially in the way that it is fair and 

predictable to trade. Consistently low risk consignments are cleared quickly and thus reward 

stakeholders for consistent regulatory compliance. Another point to highlight is that RBS designs 

are more difficult “to game” and therefore the distinctions between “dirty” and “clean” 

consignments will be more visible and actions more defendable from a risk standpoint.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inspection of grape bunches from Perú by inspectors from the NPPO of Costa Rica. 
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3. DATA AND TOOLS 
Robert Griffin1 Maribel Hurtado2 and Steve Hong3  

 
1. National Coordinator for Agriculture Quarantine Inspection USDA, APHIS, PPQ – Retired 

2. Scientific Officer NAPPO 

3. Quantitative Analyst USDA, APHIS, PPQ 

The type, amount, and quality of data collected by NPPOs, and the mechanisms for storing, 

sharing, and analyzing data for regulatory decisions vary greatly from country to country. The 

diversity of national situations creates challenges for operational harmonization but should not 

be a barrier to realizing the common objectives of free, fair, safe, and fast trade within the 

outlines of the international regulatory framework of the WTO and IPPC. The importance of 

inspection in this context cannot be overstated but the ability to effectively manage inspection 

requires the ability to measure it. These measurements require good data and appropriate tools 

to analyze, visualize, and compare key trade parameters, especially pest risk. International 

standards for phytosanitary measures (ISPMs) provide a starting point for addressing this need.  

The following discussions offer additional guidance to supplement the ISPMs and support 

operational implementation. 

3.1. Data  

Data provides the foundation for the analyses that support RBS.  Better data offers better 

opportunities for meaningful analyses, but data also requires resources and effort to collect, 

store, and share. Resources and effort in a trade environment translate into costs. For this reason, 

the objective should never be to only collect data but rather to collect key data that are practical 

and most useful for analysis. Beyond this, there are important questions of data quality which 

include accuracy, reliability, and timeliness. All these aspects of data argue for thoughtful 

approaches to data collection for RBS.   

Because every NPPO will have different situations and priorities that define their unique RBS 

interests, it is not possible to provide a generic outline for data collection. What this section aims 

to do is help NPPOs identify the most common data elements, understand their significance, and 

consider their relationship to analyses for RBS. 

3.1.1. Types of data 

In general terms, there are three categories of data: 

1. Data regarding the consignment, 
2. Data regarding the phytosanitary status of the consignment, and 
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3. Data regarding relevant regulations, policies, or administrative procedures. 
 

The first data category provides the information needed to describe/distinguish a consignment; 

its products and quantity, its origin and destination, its value and other data required to satisfy 

border entry and business requirements. This may include a Phytosanitary Certificate (PC) if 

necessary, an invoice, a customs entry declaration, and various other documentation, some of 

which may be redundant. One of the main objectives of the WTO-TF is to eliminate redundancy 

and reduce this documentation burden to its minimum in a single window system that is 

administered by the national customs service. For NPPOs, this means that collaboration with 

customs will be crucial to establishing documentation requirements and gaining access to 

relevant information. As the single window becomes digital, it will be increasingly important for 

NPPOs to work closely with their national customs service to design electronic processes that 

collect, store, and share essential import data in a timely way with NPPOs. 

The second data category on the phytosanitary status of the consignment is determined by the 

NPPO based on their own regulations, policies, and operations. For instance, the phytosanitary 

status of a consignment of frozen peas may depend only on verifying that the consignment is in 

fact frozen peas! On the other hand, a consignment of fresh cut flowers is likely to require 

inspection and may be rejected, treated, or subjected to other measures depending on the 

phytosanitary requirements of the (NPPO of the) importing country and on the results of 

inspection. In the case where a regulated pest is found, there will additional data collected by the 

NPPO to identify the pest and indicate what regulatory action was taken.   

The final category of data refers to the regulatory and administrative situation surrounding each 

consignment.  For instance, the importation of a consignment of treated fruit will have a different 

(lower) risk position in RBS than the same fruit imported without treatment. In essence, they 

become two different commodities for purposes of assigning risk.   

Most of the data needed for RBS is transactional in nature, which means that it is related to a 

business activity, which is, the commercial import of regulated goods from one country to 

another. This raises two important points about data. The first is that there will be business 

information involved which can have legal and financial implications. Fortunately, this 

information is usually not important for RBS, but NPPOs need to be able to recognize such 

information and handle it as required. The second point is that import transactions typically 

involve multiple border agencies who have their own requirements and corresponding data 

needs, especially the national customs service. 

In most cases, the information required by a national customs service, combined with 

information contained in a Phytosanitary Certificate (PC) will provide the data elements needed 

by NPPOs regarding the consignment. On rare occasions, NPPOs may need a data element that 
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is not available in this documentation. For instance, common names rather than scientific names 

may be used to identify products/commodities. Each NPPO will navigate their own data 

requirements in coordination with customs officials and other relevant border agencies to ensure 

the availability of essential data but also to prevent duplication of efforts and ensure that no 

unnecessary data requirements are created.  

3.1.2. The nature of risk  

Risk-Based Sampling aims to use the results of inspection to improve inspection by identifying 

the magnitude of risks across imported consignments so that adjustments can be made in 

inspection resources to maximize the effectiveness of risk management within the available 

resources.  

Regulatory actions taken against consignments because of inspection findings are used as a proxy 

for risk. It is important to recognize the underlying assumption here; every regulatory action may 

be an equivalent observation from a data standpoint, but all pests are not equally risky.   

A Pest Risk Analysis (PRA) is required 

to understand the true risk associated 

with each regulatory action. Since it is 

not practical to a perform PRA for 

every import-pest scenario, we 

assume that each regulatory action 

that results in the application of a 

phytosanitary measure against a 

consignment represents an average 

risk.  This greatly facilitates analysis, but it also creates possible hazards. Imagine that two 

different commodities have an equal number of regulatory actions for the same number of 

consignments, but one is for a low- risk pest and the other is for a pest that is much more 

dangerous.  RBS data would suggest that the two commodities are equivalent in their risk when, 

in fact, they are quite different because the pests represent vastly different risks.   

3.1.3. Identifying data needs 

The analysis of RBS data compares the rate of regulatory actions (as a proxy for risk) with some 

inspection parameter for which we have comparable data over a fixed period. The most common 

situation is to correlate regulatory actions with the commodity and its origin. A hypothetical 

example of the above would be, the number of regulatory actions on consignments of blueberries 

from Guatemala during the calendar year 2020.  

Risk-Based Sampling aims to use the results of 

inspection to improve inspection by identifying the 

magnitude of risks across imported consignments so 

that adjustments can be made in inspection resources 

to maximize the effectiveness of risk management 

within the available resources. 
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The data requirements for this example are quite simple; we would need to know the number of 

regulatory actions taken for pests detected in blueberry consignments during the year 2020 and 

the number of consignments of blueberries from Guatemala that were imported into our 

country. This example demonstrates the simplicity of the relationship we are using as a 

measurement; however, the reality of our interest extends far beyond a single commodity (in 

this case, blueberries). To protect the plant resources of our country, we usually want to track 

and compare the actions taken on multiple commodities over multiple years or perhaps during 

specific months within a year. We also may be interested in comparing one country with another 

(that are sending us the same commodity) or understanding which suppliers within a country are 

causing the most problems (e.g., shipping the most infested consignments). We might also be 

interested in comparing the risk posed by different shipping pathways (e.g., air versus maritime) 

or we might like to examine the consistency of inspection results for the same commodity (ies) 

at different ports of entry. In sum, a wide range of analytical options are possible if the data is 

available, and the data is consistent (based on RBS).  

3.1.4. Essential and non-essential data 

As stated earlier, most of the data needed for RBS can be extracted from routine documents 

associated with inspection activities. Some important data elements are discussed below:  

- Consignment number or ID: This is a unique identifier that links the consignment with the 

data record. It is essential in all cases as the means to establish an independent record.   

- Certificate number: Phytosanitary Certificate (PC) numbers are important for notification 

purposes but are not essential for RBS unless the NPPO is interested in correlating risk to 

PC versus non-PC consignments, in which case the PC number is not as important as the 

number of PCs. 

- Date (dd/mm/yyyy): The date of entry or inspection is an essential data element needed 

to identify consignments within defined periods of time and identify changes over time 

or pinpoint the seasonality of risk.   

- Import/Export: Whether the inspection is for import or export is only important if the 

NPPO maintains data for both.   

- Lot size N: The lot size is necessary to calculate the sample size and may need to be 

recorded for official purposes depending on the regulatory policies of the NPPO.   

- Sampling unit: The sample unit (box, bag, piece, etc.) is important to record only once if 

it is consistent or in every instance if it varies within the consignment. The key point is to 

ensure that equal data can compared.  

- Sample size: The sample size is essential data if it varies from the predetermined 

detection level for sampling. For example, if all sampling is done for a 5% detection level, 

then the sampling will be consistent, but any changes made to the sampling (such as an 
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“extra box”) changes the statistical significance of the results and should be noted as a 

deviation. 

- Randomization of samples: In a best-case scenario, sampling will be completely 

randomized but this is rarely possible. When it is possible, it is essential to record it 

because it represents an important data point for comparison.  In the case of less-than 

random sampling, there should be either a general record or record for each consignment 

that describes the level of randomization. This is important for understanding the level of 

confidence associated with inspection results.   

- Country of origin: Essential data for imports.  

- Country of destination: Essential data for exports. 

- Product (common name): Common names are conventional on import documents but 

often are not useful and can be misleading for plant health (NPPO) purposes. Common 

names are essential when scientific names are not provided because they assist in 

properly identifying the commodity.   

- Pathway: Identifying whether the consignment is arriving by air, sea, or land and whether 

the commodity is for consumption or propagation is considered essential data because it 

facilitates important risk comparisons.  

- Product (scientific name): Scientific names and even varieties can be especially important 

for recording the pest-host relationship. This is essential data for pest records. 

- Product category: Indicating whether the commodity is fresh or processed, a fruit, 

vegetable, seed, plant for planting, flower, etc. is essential for risk comparisons.  

- Importer: This is essential data for linking the consignment to a destination. 

- Exporter: This is not essential data but can be useful for comparing sources.  

- Producer: The producer is a key risk factor and can be essential data when distinguishing 

individual high-risk sources from among many commodity suppliers. 

- Pest common name: The common name of pests is non-essential and may lead to 

confusion if different countries use different common names or use the same common 

name for different pest species. 

- Pest scientific name: Essential data.  

- Pest type: The type of pest that was intercepted (e.g., insect, mite, nematode, weed, 

mollusk, etc.) is essential. 

- Pest stage: The life stage of the pest (e.g., egg, nymph, larva, pupa, adult) is essential data. 

- Number of pests: The total number of a specific pest found in the consignment is essential 

for understanding the infestation rate. Recording no (or zero) detections is also important 

(see section 3.1.5 below).  
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- Pest categorization: Data regarding whether the pest a quarantine pest (regulated), a 

non-quarantine pest (non-regulated) or a regulated non-quarantine pest is non-essential 

data except to note that only regulated pests are actionable. 

- Pest risk level: A record of whether the pest risk is high, medium, low, or negligible is 

important only if the NPPO maintains/uses this classification.  

- Action: The phytosanitary status of the consignment is the ultimate determining factor 

for its place as an inspection record.  Consignments requiring no regulatory action are 

equally important inspection records (see section 3.1.5).  

- Name of inspector performing the inspection: This is non-essential data unless the NPPO 

is tracking this information for other purposes than RBS (e.g., inspector performance 

ratings).  

- General observations: Non-essential data except as determined by the NPPO. 

3.1.5. Collecting zeros  

Recording an inspection with an observation of zero is crucial for the implementation of RBS. A 

result of zero for “number of pests found in the consignment” means that no pest was 

intercepted during the inspection process. Likewise, a zero for the variable regulatory action 

indicates that the consignment was not subjected to a risk mitigation measure. The number of 

pests and regulatory actions become meaningful by understanding their relationship to the total 

number of inspections yielding zero’s. For example, compare one action from 10 inspections 

versus one action from 100 inspections. The difference between a 1% action rate and a 10% 

action rate is only visible by knowing the number of inspections that had no action. Likewise, if 

inspection data for a specific commodity from a specific country of origin shows zero actions for 

a defined period or number of consignments, one can reasonably conclude that importing this 

commodity from this origin presents a very low or negligible pest risk. 

3.1.6. Data shortcomings  

Data is not useful for analysis if it is insufficient or lacks the necessary quality. There are two 

important strategies to consider here. The first strategy is ensuring that documentation 

associated with consignments provides appropriate information. Most of this data goes to 

Customs and is associated with the official import entry. This transactional data is normally very 

consistent but can also be inadequate. For instance, documentation accompanying a 

consignment of cut flowers may not identify the different species – information that could be 

important to the NPPO from a risk standpoint. 

The second strategy involves the phytosanitary data that results from inspection. This is where 

the bulk of responsibility falls on the NPPO to understand its risk management objectives and 

priorities so that it can design appropriate mechanisms to collect, store, distribute, and analyze 
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data on the phytosanitary status of consignments. The ability of the NPPO to effectively manage 

pest risk will depend primarily on the data it collects and the quality and quantity of this data, so 

it deserves careful attention, especially when beginning to use or when transitioning to RBS.  

Historical data from the transactional category (number and size of consignments, origin, type of 

commodity, etc.) is often easily accessed and it can be tempting to believe there are 

opportunities to use it for RBS. A critical question that must be answered before attempting such 

analyses is whether the corresponding/associated phytosanitary data is also appropriate. If the 

historical inspection data is not based on sampling for a consistent level of detection, the results 

are only weakly correlated to the transactional data for purposes of evaluating risk. Some broad 

conclusions may be drawn from relative relationships of regulatory actions to consignments, but 

the data lack analytical validity for adjusting import program parameters or requirements.   

Generally, NPPOs initiating their RBS programs using historical data should begin with data sets 

that have the greatest consistency and focus analyses on a few elements (commodity, pest, 

origin, etc.) to gain experience while also collecting more and better data for expanded analysis 

in the future.  

3.2. Tools  

The central question for NPPOs to ask about their inspection data is, what does it show? The 

converse question is just as important, and that is - what cannot be shown with the inspection 

data we have? An array of different tools and analytical techniques are available to facilitate data 

manipulation and analysis, but care is required to avoid the temptation to immediately choose 

the most sophisticated solutions before establishing a firm understanding of the limits of the 

data, tools, and analyses. What is perhaps most important is understanding the limitations of 

experience and expertise with some of the more sophisticated approaches. The aim in this 

section is to describe the basic analytical tools and provide guidance on their use. 

3.2.1. Microsoft Excel 

Data has no value for analysis unless it is in a format that allows it to be easily stored and 

accessed. Microsoft Excel is a useful tool for the collection and organization of data into one or 

more workbooks. Excel is commonly linked to larger data collection sources and can be used to 

store, access, filter and search inspection data. NAPPO has developed specific workbooks in Excel 

that can be adapted by each NPPO to assist in the collection and organization of inspection data. 

The workbook known as the database for inspection data, includes most of the categories and 

fields that are useful for RBS and that were described earlier in this chapter. The workbooks can 

be downloaded at no cost from the NAPPO website. 

https://nappo.org/english/learning-tools/Resources-and-Learning-Tools-for-Risk-Based-Sampling/Sample-Size-Calculator
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In addition to accepting numeric as well as text/written data, the cells in Excel can also contain 

embedded formulae that facilitate basic calculations as well as increasingly complex mathematic, 

trigonometric, arithmetic, financial, logic or statistical functions. Excel can be used for basic data 

analysis and to generate graphs based on the data contained in its workbooks.  

Additional Excel functionalities such as pivot tables and macros facilitate analysis of large 

amounts of data without needing to develop the formulae “de novo”. These functionalities can 

facilitate automated data analysis. 

Some of the analyses that can be performed with inspection data using Excel include, among 

others, analysis of variance, correlation calculations between two variables, covariances, 

generation of descriptive statistics reports, frequency histograms, and generation of random 

numbers. On the other hand, Excel allows data organization in order to carry out these and other 

analyses in different statistical programs such as R. 

3.2.2. Hypergeometric tables 

Hypergeometric tables are a useful tool to determine the sample size to be inspected from a 

given lot or to determine the acceptable risk level for an already inspected sample. They provide 

the hypergeometric probability distribution for the sample size in different lot sizes with different 

acceptable risk and confidence levels. Likewise, they make it possible to determine the 

acceptable risk level given the parameters of lot size, confidence level, and sample size. The 

hypergeometric tables for different lot sizes (100 to 200,000) can be found and freely 

downloaded from the NAPPO website.  

3.2.3. Sample size calculator  

It is also possible to calculate the appropriate sample size for inspection without using 

hypergeometric tables. A sample size calculator created in Excel and freely available from NAPPO 

(see below) uses the formula below developed by Fosgate for surveillance and animal disease 

detection and to document disease freedom after an outbreak (Fosgate, 2009). The use of this 

formula for RBS purposes requires determining the pest prevalence that the NPPO considers 

important to detect (= acceptable level of risk), defining the desired level of confidence, and 

knowing the lot size. The formula to calculate sample size is as follows:  

n=[1−(α)1/d] {N−[(d−1)/2]} 

Where α is 1 – the level of confidence, N is the population size or the lot size, and d is the expected 

number of pests in the population. 

The sample size calculator and the step-by-step instructions on how to use it, are available on 

the NAPPO website.  

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/www.nappo.org/application/files/7016/1299/5046/20210112_Version_1._Hypergeometric_tables-e_-_without_annex_title.pdf
https://nappo.org/english/learning-tools/Resources-and-Learning-Tools-for-Risk-Based-Sampling/Sample-Size-Calculator
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Figure 4. Sample size calculator. 

An example is provided above (see Figure 4) using a detection level of 10% [1], a confidence level 

of 95% (0.95) [2], a lot size of 100 [3], and the sampling unit which will be boxes [4]. Using these 

inputs, the calculator will indicate that the sample size to be taken corresponds to 25 boxes. In 

this example a lot of 100 boxes would require 25 boxes to be inspected to achieve a detection 

level of 10% with 95% confidence. 

3.2.4. Detection level calculator  

A detection level calculator is being developed by NAPPO. This calculator is intended to be used 

to determine the detection level or acceptable risk level for an inspection when the confidence 

level, lot size, sampling unit data, and sample size are provided. The ability to calculate the 

detection level from sampling information is useful for understanding the level of detection for 

non-RBS inspections and the range of detection levels for different inspections. This information 

supports the analysis of existing inspection designs and identify areas of greatest concern for risk-

based adjustments.  

3.2.5. R and R Studio  

R is a freely downloadable software environment designed for statistical computing and graphics. 

R includes an effective data handling and storage capability; a suite of operators for calculations; 

an integrated collection of tools for data analysis; visual tools for data analysis and display and 

uses simple and effective programming language. R is available under the terms of the Free 

Software Foundation’s GNU General Public License in source code from: https://www.r-

project.org/ 

R Studio is freely downloadable here https://www.rstudio.com/. It is an integrated development 

environment (IDE) for R.  
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In terms of RBS, R and R Studio can be used to perform more in-depth analysis and interpretation 

of properly collected inspection data. In addition, R and R Studio can also be used to visualize 

inspection data through the generation of Treemaps which are explained below.  

3.2.6.  Treeemaps in R 

A Treemap is a visualization tool used to display hierarchical data using nested rectangles in a 

tree-like structure. It greatly simplifies the understanding of the relationship between data 

variables, including inspection data. A Treemap captures two types of information: the value of 

individual data points and the structure of the hierarchy generated by the data. The area of each 

generated rectangle is proportional to its value. Treemaps are generally used when 

wanting/needing to visualize proportions derived from a large amount of hierarchical data. 

The Treemap function in R allows the user great flexibility when drawing a Treemap. In the 

example below (Figure 5), hypothetical inspection data on action rates for different 

consignments (flowers, walnuts, mango, coffee, Palm oil, etc.) from different countries 

(Countries 1 – 10) were used to generate a Treemap using R.  The color intensity in the Treemap 

rectangles indicate higher regulatory action rates for the commodities. The size of each 

commodity rectangle represents the volume of that specific commodity imported from that 

specific Country (Mango from Country 1 versus Mango from Country 10) into your Country. 

The R Treemap visualization tool allows for an easy assessment of where pest risk is higher in this 

hypothetical example. For example, it is evident that most commodities exported from Country 

7 have the highest regulatory action rates following inspection, followed by those originating in 

Country 1. It is also clear that. 

• Not all Countries that export mango (to your Country) present the same level of risk even 

though they export different volumes of mango.  

• Palm oil has very low regulatory action rates irrespective of Country of origin. 

 
 

 

 

 

 

 

 

 

Figure 5. Treemap representing regulatory action rates for different consignments, see above for explanation.  
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The step-by-step instructions on how to develop Treemaps using R and properly collected 

inspection data will soon be available to be freely downloaded from the NAPPO web site.  

3.2.7. Using RBS for data analysis and risk categorization  

Recently, Kim et al. (2018) used inspection data from the U.S. Department of Agriculture (USDA) 

to estimate the probability of the presence of quarantine pests on propagative plant materials 

imported from different countries and develop a risk-ranking methodology for the different 

country–commodity combinations.  

 

They chose to analyze inspection records for propagative material because importation of plants 

for planting poses a higher risk than imports of other regulated plant products and because a 

history of pest interception data was available for analysis from the USDA. The inspection data 

was split into two data sets (70% - training data set and 30% - test data set) which were used to 

develop the predictive models (using the training data set) and conduct the validation study 

(using the test data set). 

 

Kim et al (2018) used a generalized linear model (GLM) with Bayesian inference and a generalized 

linear mixed-effects model (GLMM) contained in R version 3.2.5 to estimate interception rates 

on different country-commodity combinations and their associated uncertainties. 

 

They categorized country-commodity combinations into different compliance levels based on 

simulated interception rates of quarantine pests and predetermined thresholds and compared 

the categorization results among models. They used a two-step approach in their analysis. First, 

country–commodity combinations were separated into small and large variance groups based on 

confidence intervals of the estimated probabilities of carrying quarantine pests. Second, each 

group was further partitioned into different compliance levels (High, Medium, Low, and 

poor/unacceptable) using defined thresholds.  

 

Analysis of the data determined the top five plant genera carrying quarantine pests, revealed the 

most frequently imported plant genus, and highlighted which country-commodity combinations 

had the highest number of quarantine pest interceptions.  

 

The study found that the prediction ability of the GLMM was greater than that for GLM. However, 

predicted interception rates and their confidence intervals were influenced by the statistical 

models used. This suggests that care must be taken when applying results such as these to the 

development of inspection programs with different monitoring intensities based on compliance 

levels of country-commodity combinations. 
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Entering inspection data. 

Source - https://www.senasa.gob.pe/senasacontigo/ica-inspeccion-fitosanitaria-de-palta-hass-para-
exportacion-a-china/ 

 
  

https://www.senasa.gob.pe/senasacontigo/ica-inspeccion-fitosanitaria-de-palta-hass-para-exportacion-a-china/
https://www.senasa.gob.pe/senasacontigo/ica-inspeccion-fitosanitaria-de-palta-hass-para-exportacion-a-china/
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The goal in sampling applications is to be able to make a statistical statement about some 

characteristic of a collection of objects. For example, we may wish to estimate the average family 

income in a city, or how many families in the city have an average income that is below some 

threshold. We may wish to know the number of habitat trees in a forest, or the total woody 

volume in a forest. We may wish to estimate the proportion of contaminated fruit in a 

consignment of oranges that has arrived at our national border, or the proportion of orange trees 

in an orchard that are infested with a pest. In all these instances, it is too expensive and too slow 

to inspect or measure all the population, so we resort to taking a sample from the population, 

measuring the units in the sample, and drawing a conclusion about the population from the 

sample.   

 

In order to draw a conclusion about the unknown population that is based on the known sample 

of units, it is essential that the sample be taken correctly, and that the data arising from the 

sample be analyzed correctly. Sampling 

theory guides us in how to do both 

things. Failure in either step will yield 

conclusions that do not have the 

intended statistical credibility and will 

therefore potentially mislead the analyst or the decision-maker. Sampling theory allows us to 

learn about the whole population without measuring the whole population. Correct and efficient 

use of sampling theory requires an appreciation of the relationship between the population, the 

sampling units that comprise the population, and how to select the sample.   

4.1. Sampling unit, population, and frame 

Sampling units are the units into which the population is divided, and which are selected and 

then measured in some way. The definition of the sampling units and the population are 

Sampling theory allows us to learn about the whole 

population without measuring the whole population. 
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therefore linked (see Table 1 below). In an operational setting, the choice of sampling unit (e.g., 

container, box, item) will depend on the physical as well as the biosecurity context, including the 

size of the items comprising the consignment (e.g., watermelons, apples, or strawberries) and 

the nature of the pest (e.g., mobile insect, sessile insect, fungal pathogen).  

 

In order to select a sample of units from the population we require a frame, which in its simplest 

form, is a list of numbers corresponding to each unit in the population. Sampling works by 

randomly selecting the units from the frame and then measuring the sampling units in the 

population that correspond to the units in the frame. Sometimes the frame is an imperfect match 

to the population, and unmeasurable but hopefully small errors ensue. Example frames, some 

imperfect, are also included in Table 1.   

 
Table 1. Example of general and plant health scenarios, populations sampling units and frames. 

Scenario Population Sampling Unit Example Frame 

Estimate the average family 
income in a state. 

All the families in the state. A family. State taxation records. 

Estimate the number of Total 
trees in a forest. 

The land area covered by 
the forest. 

A square 0.04 ha 
plot. 

A map of the forest area. 

Estimate the proportion of 
contaminated fruit in a 
consignment of oranges. 

All of the orange 
crates/boxes in the 
consignment. 

A crate/box of 
oranges. 

A list of the boxes or a list 
of numbers from 1 to the 
box count. 

Estimate the proportion of 
contaminated fruit in a 
consignment of oranges. 

All of the oranges in the 
consignment. 

An orange. A list of numbers from 1 
to the inspected orange 
count.  

Estimate the proportion of 
orange trees in an orchard that 
are infested with a pathogen 

All of the orange trees in 
the orchard. 

An orange tree. A list of numbers from 1 
to the infested tree 
count. 

 

In the border inspection setting, sampling is typically applied to consignments of regulated 

articles, and inspection is performed to determine whether the consignments are compliant with 

biosecurity regulations. If the sample detects a non-compliance, then further regulatory action is 

taken, for example treatment, re-export, or destruction, whereas if no non-compliance is 

detected then the consignment is typically released into commerce. Consequently, sampling and 

inspection for biosecurity compliance are different than the traditional sampling applications, 

because the objective is to make a decision (release/intervene) instead of only making an 

estimate (e.g., of the contamination rate).  
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Regardless of sampling objective, we should specify the sample size – the number of units in the 

sample – before we begin sampling. The approach to determining the sample size applies to 

estimation, rather than decision-making. We try to choose a sample size that will provide an 

estimate that isn’t too uncertain, recognizing that increasing the sample size decreases the 

uncertainty but also increases the time and cost associated with sampling.  

 

To choose a sample size for 

biosecurity compliance, we assume 

that the only condition under which 

we will release the consignment is if 

an inspection of n units results in no 

pest detections/interceptions, let’s 

say x = 0.  Then, we choose n in such a 

way that we are unlikely to detect no 

pests in n inspections unless the proportion of infested units is extremely low. Then we can 

compute the sample size. For example, if we want to detect pests with 95% probability in a 

consignment for which 0.5% of the units are infested, then we must inspect about 600 units, 

assuming that inspection will always detect pests that are present. See additional information in 

Sections 4.2.1. and 4.4.3. 

 

There is an additional consideration, which is that sampling may also be applied within pathways, 

that is, the consignments that are inspected may themselves be selected from a pathway of 

consignments. So, we may have a random sample of consignments taken from the pathway, and 

within the chosen consignments, we may select a random sample of units, for example oranges, 

or crates of oranges. We would do this if we were interested in monitoring the pathway in case 

the biosecurity risk might change.  

 

In each case, having decided upon the population and sampling unit, and having obtained the 

best frame available, we then choose the sample. There are many ways of choosing samples 

(sample designs) that rely on the availability of different types of information, or different 

expectations about what the population will be like. We will cover some of these in the next 

section.  In the absence of any other information, the most informative sample is one that selects 

the units completely at random – the Simple Random Sample. 

4.2. Sampling methods  

Below is a brief overview of different kinds of sampling methods.  The methods are split into two 

classes: statistically based sampling – where sampling outcomes have known statistical 

properties – and non-statistically based sampling, where is sampling done in some other way.  

Sampling and inspection for biosecurity compliance 

are different than the traditional sampling 

applications because the objective is to make a 

decision (release/intervene) instead of making an 

estimate. 
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4.2.1. Definitions and related concepts 

In statistically based sampling, we develop the sample design, collect the sample, and analyze 

the data according to a prescribed recipe. Below are definitions important to statistically based 

sampling. 

 

Parameter – the population parameter is the characteristic that we wish to estimate. For 

phytosanitary inspections we design the sample as though we want to estimate the infestation 

rate in the population.  

 

Sample size – the sample size is the number of units selected from the lot or consignment that 

will be inspected or tested (FAO, 2016). This is usually denoted by the letter n, as indicated earlier. 

 

Level of detection –the level of detection is directly related to the confidence level; in that it is 

the lower limit of the proportion of infested units that should be detected at the given confidence 

level. We will use p for pest prevalence. 

 

Confidence level – the confidence level is the minimum probability at which we wish to detect 

infestation in the sample, given that the baseline infestation rate is equal to or higher than the 

level of detection. In the example above (see 4.1), the confidence level was 95%. The confidence 

level is also the sensitivity (= s) with which a test detects a negative outcome.   

 

ISPM 31 says: “95% confidence level means that the conclusions drawn from sampling will detect 

a non-compliant consignment, on average, 95 times out of 100, and therefore, it may be assumed 

that, on average, 5% of non-compliant consignments will not be detected.” (IPPC 2008). This 

statement is true, however, in the present context, it may be misleading because of the definition 

of non-compliance. In the example above (see 4.1) the probability of detecting a large 

consignment with exactly 0.5% infestation was 95% when sampling (about) 600 units. If the 

infestation were higher – and therefore still non-compliant – then the probability of detection 

would be higher than 95%. For example, the probability of detecting a 1% non-compliant 

consignment using a 600-unit sample would be about 99.8%. As such, it is important to indicate 

the level of non-compliance along with the detection confidence level. See additional information 

in Section 4.4.3. 

 

Efficacy of detection – it is possible that an infested unit will be inspected but the infestation may 

not be detected.  If we allow for this possibility, we do so by using the efficacy of detection, which 

is defined as the probability of detecting infestation that is present.  In the example above (see 

4.1) we assumed “perfect” detection, so the probability and therefore the efficacy of detection 

were equal to 1. 



Risk Based Sampling 
 

31 | P a g e  

 

4.2.2. Statistically based sampling methods 

This section describes commonly used statistically based sampling methods. 

 

a. Simple random sampling (SRS or SyRS) is the selection of a sample of size n from a process 

such that every possible combination of n sampling units has the same probability of being 

selected. This definition is more stringent than simply stating that each n unit has the same 

probability of being selected. The SRS design is the foundation of sampling theory but is 

rarely used. An example of SRS in biosecurity is the automated computer selection of 

consignments for inspection with a set probability. 

 

b. Systematic sampling (SyS) is an alternative to SRS that imposes a grid on the process, 

selecting every k-th unit. Two things are needed to employ SyS: a grid spacing k, computed 

to achieve a desired sample size n, and a random starting point. SyS has an advantage for 

inspection of consignments where pests are clustered, as the probability of detecting one 

pest cluster is higher for SyS. Wolter (1985) has a comprehensive review of SyS. 

 

c. Cluster sampling (CS) is applied when sampling is hierarchical, and it is easier and less costly 

to sample sets of units than sampling the units themselves.  For example, for apples packed 

in boxes, it may be more convenient to randomly or systematically select the boxes and 

inspect all the apples than to randomly or systematically select the apples within the boxes.  

In this example the boxes are treated as though they were clusters of apples.  CS achieves 

nominal sensitivity for randomly dispersed pests, but not for clustered pests, for which the 

sensitivity will be lower than desired.  

 

d. Stratified sampling (StS) is a way of organizing the sampling units before they are selected. 

In StS, all the units are classified into strata and then each stratum is sampled as though it 

were unique. StS requires additional information about each unit, is used to allocate it into 

the appropriate stratum.   

 

e. Sequential sampling (SeS) involves a change to the stop rule, which indicates how many 

units the sample should have. Earlier we indicated that sample size is set before sampling 

begins. Here, the stop rule is that If n samples have been taken, then sampling is stopped. 

This is known as fixed n sampling. Under SeS the stop rule is different. Sampling typically 

continues until a statistical condition is met. SeS has lower strategic value than fixed n 

sampling because the estimator of prevalence is less efficient. However, if the sole purpose 

is to determine the biosecurity status of items in the pathway, then SeS may be preferred.  

Note that if the sample units are correlated, instead of being independent, then SeS can 

perform poorly (Robinson and Hamann, 2008). 

 



Risk Based Sampling 
 

32 | P a g e  

 

f. Fixed proportion sampling (FPS) involves sampling a specific proportion of the 

consignment, for example, 2%. FPS yields inconsistent levels of detection or confidence as 

consignment sizes vary. That is, when the set level of detection is expressed as a percentage 

of the consignment, FPS achieves it with confidence that depends on consignment size. 

However, if the set level of detection is expressed as an absolute number, then FPS 

confidence is independent of the consignment size. 

4.2.3. Non-statistically based sampling methods 

This section describes commonly used non statistically based sampling methods. 
 

a. Convenience sampling according ISPM 31, involves selecting the most convenient (for 

example, most accessible, less costly, fastest) units from the consignment, without 

selecting units in a random or systematic manner (FAO , 2008). 
 

b. Haphazard sampling involves selecting arbitrary units without using true randomization. 

Haphazard sampling may appear to be random because the inspector is not aware of having 

a sampling bias. However, unconscious bias may occur, so that the degree to which the 

sample is representative of the lot is unknown (FAO , 2008). 
 

c. Selective or targeted sampling according ISPM 31, involves deliberate sample selection 

from parts of the consignment most likely to be infested, or from units that are obviously 

infested, to increase the chance of detecting a specific pest. This method may be favored 

by inspectors who are familiar with the commodity and the pest’s biology. Use of selected 

or targeted sampling may be triggered when wanting to identify a specific part of a 

consignment that has a higher probability of being infested. For example, a section of wet 

timber may be more likely to harbor nematodes that dry sections of timber. Because the 

sample is targeted, and hence statistically biased, a probabilistic statement about the 

infestation level in the lot cannot be made. However, if the sole purpose of sampling is to 

increase the chance of finding a regulated pest(s), this method is valid. However, additional 

sampling may be required to reach general confidence in the detection of other regulated 

pests. The use of selective or targeted sampling may limit the conclusions about the overall 

pest status of the consignment. 

4.3. Implementing sampling plans 

4.3.1. Sample design and selection  

Sample design and selection should consider what knowledge is available on the distribution of 

pests in the lots or consignments. When pest distribution is unknown and because sampling is 

done without replacement and the population size is finite, hypergeometric distribution should 
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be used to determine the sample size. A hypergeometric distribution indicates the probability of 

detecting a certain number of infested units in a given sample size drawn from a lot of a given 

size, when a specific number of infested units exist in the lot or consignment (FAO , 2008). 

Hypergeometric tables are useful tools in this respect. Additional information on hypergeometric 

tables and their use can be found here. 

 

When pest distribution in a lot or consignment is clustered or aggregated, ISPM 31 indicates that 

it will always lower the likelihood of finding an infestation (IPPC, 2008). However, Simple Random 

Sampling (SRS) described above in Section 4.2.2., achieves nominal sensitivity when applied to 

situations where pests are both randomly dispersed and clustered (Yamamura et al., 2015; Lane 

et al., 2019).  

4.3.2. Multiple lots in a consignment 

Often a consignment will be composed of several lots that are similar in some ways and different 

in others.  For example, a consignment of oranges may include lots from more than one supplier. 

A question for this scenario might be: How can consignment-level assurance be achieved?  If, for 

example, a 600-unit inspection is routinely applied to a single-source consignment (one supplier), 

then should a 600-unit inspection be used for each different supplier, or could we split the 600-

unit sample in some way that would achieve consignment-level assurance?  

 

ISPM 31 indicates that “Treating multiple commodities as a single lot for convenience may mean 

that statistical inferences cannot be drawn from the results of the sampling.” (IPPC 2008). 

However, Lane et al. (2019) demonstrated that consignment-level assurance can be achieved by 

applying the usual sampling methods and can be improved by means of stratification with 

proportional allocation. This means that the sample needs to be allocated between the lots 

within the consignment proportionally to the number of units within each lot, with one important 

caveat - the entire consignment must be treated according to the outcome of the sample 

inspection.  

 

To illustrate further, if a consignment includes lots A and B, with 20,000 and 40,000 units 

respectively, then nominal consignment-level assurance can be achieved if no infestation is 

detected from a sample of 200 and 400 units respectively. However, if infestation is detected in 

lot A only, then both lots must be subjected to the phytosanitary measures. This is because the 

stratification approach does not provide the same assurance than if each lot were treated as a 

unique consignment.  In order to achieve that level of assurance, we would need to apply the 

600-unit sample to each lot.  However, when the goal is consignment-level assurance, the 

stratification approach is sufficient. 

https://nappo.org/application/files/7016/1299/5046/20210112_Version_1._Hypergeometric_tables-e_-_without_annex_title.pdf
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4.4. Probability distributions 

4.4.1. Useful formulae 

The probability mass function, sensitivity, and sample size formulae for the hypergeometric, 

binomial, Poisson, and beta-binomial sampling are given in Table 2.  

 
Table 2: Probability mass function, sensitivity, and sample size for different types of distribution. 

Type of sampling Probability mass function Sensitivity Sample size 

Hypergeometric 
𝑃𝑟(𝑋 = 𝑘) =

(𝐾
𝑘

)(𝑁−𝐾
𝑛−𝑘

)

(𝑁
𝑛

)
 

   

𝑆 
=  1 

−
(𝑁−𝐾

𝑛
)

(𝑁
𝑛

)
 

 

n ~ [1 – (1-S)1/(pN)] [N – (pN-1)/2] 
 

𝑛 ∼ [1 − (1 − 𝑆)1/(𝑝𝑁)][𝑁

− (𝑝𝑁 − 1)
/2] 

 

Binomial 𝑃𝑟(𝑋 = 𝑘) = (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘  

 

S = 1 – (1-p)n 
𝑛 =

𝑙𝑛(1 − 𝑆)

𝑙𝑛(1 − 𝑝)
 

 

Poisson  Pr(X=k) = λk eλ / k! 
λ = pn 

S = 1-e-pn 
𝑛 =

−𝑙𝑛(1 − 𝑆)

𝑝
 

 

Beta-binomial 
P𝑟(𝑋 = 𝑘) = (

𝑘

𝑛
)

𝐵(𝛼 + 𝑘, 𝛽 + 𝑛 − 𝑘)

𝐵(𝛼, β)
 

Where B is the beta function. 

S ~ 
(1+nθ)mp/θ 

 
p = α/(α+β) 
ρ=1/(1+α+β ) 
m = number 
of clusters = 
nk/n 

𝑛 ∼ −
𝑛𝑘θ

𝑝

𝑙𝑛(1 − 𝑆)

𝑙𝑛(1 + 𝑛𝑘θ)
 

nk = number of samples per 
cluster 
θ= 1/(α+β)= rho/(1-rho) 

 

Starting from the distribution’s probability mass function Pr(X=k), X being a discrete random 

variable and k the number of infested samples, we can compute the sensitivity (confidence-level) 

of an inspection as the probability of detecting at least one infested unit in the inspection: S = 

Pr(X≥1) = 1 – Pr(X=0). We compute the sample size n required to detect a prevalence p with a 

confidence-level S by rearranging the sensitivity equation and fixing p and S to a given value (and, 

depending on the distribution, additional parameters such as lot size N, or aggregation index θ).  

 

An alternative to controlling for the design prevalence and sensitivity of the inspection is 

controlling for slippage (leakage). Slippage is the number of infested units not detected during 

inspection and that end up entering the country. Slippage is calculated as the proportion of 

consignments that are deemed compliant (1 – S) times the number of infested units in these 

consignments p(N-n). Another useful metric is slippage rate defined as slippage divided by lot 

size: p(N-n)/N (see 4.4.5.). 
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4.4.2. Sample size for small lots: Hypergeometric-based sampling (simple random 

sampling) 

When inspecting small lots, it is important to remember that sampling is done without 

replacement (e.g., we do not put an orange back in the lot after inspecting it). Sampling without 

replacement is described by the hypergeometric distribution. It has four parameters: the number 

of units N and infested units K in the lot, and the number of units n and infested units k in the 

sample (see Table 2). The lot infestation rate is p = K/N. While there is no close form solution for 

the sample size for the hypergeometric distribution, we can solve for n either by doing a simple 

search over the values of n or use the approximation given in Table 2 rounded to the higher 

integer. When the number of units sampled n is relatively large compared to lot size N (say more 

than 5%), hypergeometric sampling instead of binomial sampling should be used as it allows 

reducing sample size without compromising the level-of-detection and the confidence-level. 

4.4.3. Sampling of large lots: binomial or Poisson-based sampling 

When the number of sampled units is much smaller than the number of units in the lot (say less 

than 5%), we can simplify calculations by approximating sampling without replacement 

(hypergeometric) with sampling with replacement (binomial). Binomial sampling is the most 

common sampling method in biosecurity and forms the basis for the 600-sample rule used in 

some biosecurity programs. The 600 sample rule detects 95% of consignments having an 

infestation rate of 0.5%, calculated as follows: S = 1 - (1 – 0.005)^597 = 0.95 and n = log(1-0.95) / 

(log(1-0.005)) = 597, and often rounded to 600. 

 

Poisson-based sampling may be used as further approximation to binomial sampling when p is 

low and n is large. For example, Poisson sampling detects 95% of consignments having an 

infestation rate of 0.5% when n = -log(1-0.95)/0.005 = 599. Poisson sampling is seldom used in 

practice. 

 

Arya, et al. (2012) and Fosgate, (2009) indicate that when the target population is very large 

(theoretically infinite), hypergeometric distribution can be well approximated by a binomial one.   

4.4.4. Sampling for pests with an aggregated/clustered distribution: beta-binomial 

based sampling 

When data is aggregated/clustered, we have to account for clustering in the statistical procedure. 

The most used model for clustered data is the beta-binomial model. The beta distribution can be 

parameterized in terms of parameters α and β, in terms of parameters p (mean infestation rate) 

and ρ (ICC), or in terms of p and θ (aggregation index) (see Table 2). It can be useful to switch 

between parametrizations when one type is more convenient for some the calculations.  
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Aggregation/clustering reduces inspection sensitivity (= reduces the chance of finding infested 

units during inspection). This means that if we want to keep the sensitivity constant, we need to 

increase the sample size relative to that of the binomial sampling. How much more to sample 

depends on the intra-cluster correlation coefficient (ICC or of the aggregation index θ) and the 

number of samples per cluster. When we sample one unit per cluster and the clusters themselves 

are sampled at random, the sample size is equivalent to binomial sampling. When the ICC is zero 

(= there is no clustering), we can also use the formula for binomial sampling. Approximate 

formulae for the sensitivity and sample size are given in Madden et al. (1996) and Venette (2002) 

and reproduced in Table 2. The approximation is based on the negative binomial approximation 

to the beta-binomial distribution when p is low, analogous to the Poisson limit to the binomial. 

 

Computing the sensitivity and sample size for beta-binomial model (Table 2) requires an estimate 

of the ICC (or of θ). However, there is little guidance on how to obtain this estimate. A first 

approach is to fix the ICC to a reasonable value or to extract the value from the literature when 

estimates are available. For example, Madden et al. (1996) suggest θ of 0.016-0.090 for grape 

plants infected with the fungus Eutypa lata, and Hughes and Madden (1993) report θ of 0.0056-

0.123 for tobacco virus in tobacco plants. 

 

A more tailored approach to estimating the ICC is to fit a beta-binomial model to past inspection 

data from the pathway. A first estimate of the ICC can be obtained by using the method of 

moment to one inspection in the pathway θ = (s2 - np(1-p)) / (n2 p (1-p) – s2), where s2 is the 

sample variance or by maximum likelihood (Griffiths 1973). Modern statistical software such as 

R (see section 3.2.5. for more on R) provide packages to accomplish this (VGAM, GAMLSS). 

However, a single consignment may not have enough data and might not be representative of 

the entire pathway. A better approach is to fit a hierarchical beta-binomial model to all 

consignments in a pathway and accommodate for varying prevalence among different 

consignments. The equation for hierarchical beta-binomial model is: 

𝑘 ∼ 𝑏𝑒𝑡𝑎𝑏𝑖𝑛𝑜𝑚(𝑝𝑗 , 𝑛, ρ) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑗) ∼ 𝑁(γ, σ) 

 

The top row represents a beta-binomial distribution of infested units among crates in 

consignment j with prevalence pj. The bottom row represents the varying infestation rate among 

consignments. Fitting the ρ parameter on the logit scale allows it to be bounded in the 0-1 range. 

 

To analyse how estimates of p and ρ in the hierarchical beta-binomial model are affected by the 

number of consignments of the pathway, we simulated pathways ranging from one to 100 

consignments. Each consignment had 600 samples (30 units per crate and 20 crates) and its own 



Risk Based Sampling 
 

37 | P a g e  

 

prevalence pj sampled from a normal distribution with a mean = -5.29 (p=0.005 on the original 

scale) and a standard deviation σ=1 on the logit scale. We simulated the number of infested 

samples among crates within each consignment using a beta-binomial distribution with mean pj 

and ρ=0.1. We repeated the simulation 10 times for each pathway size. We then fitted the 

hierarchical beta-binomial model to each replicated dataset to determine if we could recover the 

simulated parameters and see the uncertainties associated with these estimates. 

 

While they are centred around their simulated value, one consignment with 600 samples is not 

enough to estimate p and ρ, and there is a large variation in the mean value of p and ρ among 

replicates. For both p and ρ, the standard error of the credible intervals is of the same size than 

the mean (coefficient of variation of 100%). This is not good enough. It seems that >30-40 

consignments allow estimating ICC with sufficient precision (standard error of ~0.03, CV of ~0.3). 
 

 
Figure 6: Mean parameter value and standard error for p and ρ estimated as a function of pathway size. Each grey 

dot shows one replicate simulation of the pathway, while solid black lines show the mean among different replicates. 

4.4.5.  Comparison of hypergeometric and fixed proportion sampling results 

An alternative to calculating sample size based on a desired inspection sensitivity is to do fixed 

proportion sampling. In biosecurity, it is common to sample 2% of the units contained in a 

lot/consignment. The sensitivity of proportion sampling is not constant and increases with lot 

size (Table 3). Inspection sensitivity can be particularly low when lot size is small (S=0.63 when 

N=10,000 and n=200). By contrast, hypergeometric sampling keeps the sensitivity constant, while 

the sample size increases with lot size. 
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Table 3: Comparison of the sensitivity (S) and the sample size (n) of proportional and hypergeometric sampling for 

varying consignment sizes (N). The infestation rate per consignment p was fixed at 0.005. 

 

 Proportion sampling Hypergeometric sampling 

N n S n S 

100 2 0.010 100 0.95 

200 4 0.020 190 0.95 

500 10 0.049 349 0.95 

1,000 20 0.095 450 0.95 

2,000 40 0.182 517 0.95 

5,000 100 0.394 564 0.95 

10,000 200 0.633 581 0.95 

20,000 400 0.865 589 0.95 

50,000 1,000 0.993 595 0.95 

100,000 2,000 1.000 596 0.95 

200,000 4,000 1.000 597 0.95 

 

Slippage is the number of infested units not detected during inspection and that end up entering 

the country. Slippage is calculated as the proportion of consignments that are deemed compliant 

(1 – S) times the number of infested units in these consignments p(N-n). 

 

For very small prevalence (e.g., p=0.0001), it takes many samples for fixed proportion and 

hypergeometric sampling to diverge in terms of leakage, as mentioned in the section 4.4.1. 

 

Fixed proportional sampling is typically worse than hypergeometric sampling when prevalence 

and lot size are intermediate (p=0.001-0.005, N=10,000). Hypergeometric sampling is typically 

worse than fixed proportion sampling when prevalence is intermediate and lot size are large 

(p=0.001-0.005, N>50000). The leakage curves (Figure 7 and 8) intersect when the sample size n 

is the same for both sampling methods (~600 units, that is when N = 30,000). When sample size 

is high, hypergeometric sampling can do much worse than fixed proportion sampling (the leakage 

risk increases linearly with lot size).  
 

One solution to this problem would be to use hypergeometric sampling when lot size is below 

30,000 and use proportional sampling or increase the sensitivity of the inspection or the level of 

detection when lot size is higher as was done in Yamamura (1995, 2016). 
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Figure 7: Leakage of fixed proportion sampling and hypergeometric sampling as a function of lot size N and 

prevalence p in the lot. The sample size for the hypergeometric sampling was targeted to have a 95% confidence of 

detecting consignments having a prevalence of 0.005. 

 
Figure 8: Leakage rate (leakage / N) as a function of p. When N is low, leakage rate is much worst for fixed proportion 

than for hypergeometric sampling. Leakage rate for hypergeometric sampling is not sensitive to N. Another way to 

look at it is to determine the maximum leakage rate that we are willing to have and to set the sample size of the 

hypergeometric sampling so that the maximum of the leakage rate curve for any given p is below this value (Lane, et 

al. 2018.). 
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4.5. Continuous Sampling Plans (CSPs) 

The concept of continuous sampling plans was introduced by Dodge (1943) as sampling 

inspection plans for a product consisting of individual units manufactured in quantity by an 

essentially continuous process. The detailed procedure and tables for construction and selection 

of continuous sampling plans was 

provided by Stephens (1981). 

Bebbington et al. (2003) indicates that 

a CSP is a set of rules that provide a 

given Average Outgoing Quality 

(AOQ1), ideally with the minimum of 

effort (as measured by the Average Fraction Inspected or AFI). Most CSPs are based on the 

assumption that the quality (either defective or not) of successive production units is 

uncorrelated.  

Different countries utilize CSPs in their plant health inspection procedures for acceptance of 
different products. Continuous sampling plans may reduce inspection rates after an importer 
achieves a predetermined number of sequential pest-free consignments. Examples of these 
applications will be provided below. 

4.5.1. Different types of Continuous Sampling Plans  

Dodge (1943) outlined the first type of continuous sampling plan or CSP-1. Almost a decade later 

Dodge and Torrey (1951) further refined CSP-1 and presented two additional continuous 

sampling plans - CSP-2 and CSP-3. (Antila, et al. 2008). 

Schilling & Neubauer (2017) specified the procedure for CSP-1 for plant health purposes as 

follows (Schilling and Neubaer 2017), also see Figure 9:  

1. Specify the sampling fraction (f2) and clearing interval (i3) for the consignment. 

2. Begin inspecting at 100%. 

3. After i units in succession have been inspected and found without a defect proceed to 

randomly inspect the fraction (f) of the units. 

4. When a defective unit is found, revert to 100% inspection. 

 
1 Average Outgoing Quality, AOQ. The expected average quality level of the outgoing product, or mean fraction nonconforming 
in released lots, for a sampling plan for a given fraction nonconforming of the incoming product (Schilling and Neubauer, 2017) 
(also see section 5.2.2.2.). 
2 The f is the fraction of units to be tested, after the sampling has been triggered. For example, f = 1/10 means that every tenth 
product is tested. 
3 The parameter i, also known as clearing interval, defines the number of products needed to be tested fully (100%) before 
sampling can be started. 

Continuous sampling plans may reduce inspection 

rates after an importer achieves a predetermined 

number of sequential pest-free consignments. 
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Figure 9. Diagram for Continuous Sampling Plant 1 - CSP-1. Source: Adapted from (Antila, et al. 2008). 

Continuous Sampling Plan 2 - CSP-2 - is often preferred over CSP-1 as the return to 100% 

inspection does not occur immediately upon detection of a defective unit (Antila, et al. 2008).  

CSP-2 proposes to modify CSP-1 by changing some steps as follows: 

When a defective unit is found, CSP-2 suggests that we continue sampling for k successive units. 

If no defect is found in these successive (k) units, then we continue randomly inspecting a fraction 

(f) of the units. However, if a defective unit is found in the k samples, CSP-2 immediately reverts 

to 100% inspection (Schilling and Neubaer 2017). 



Risk Based Sampling 
 

42 | P a g e  

 

 

Figure 10. Diagram for Continuous Sampling Plan 2 - CSP-2. Source: Adapted from (Antila, et al. 2008). 

In other words, the additional parameter, k, is introduced in CSP-2. Compared to CSP-1, CSP-2 

has the disadvantage of requiring a lengthened clearing interval i in order to reach the same 

AOQL4 with the same fraction f (e.g., Juran, 1988; Dodge and Torrey, 1951; see also Antila, et al. 

2008) (Figure 10). 

CSP-3 introduces an additional refinement to CSP-1 and CSP-2. This refinement has the purpose 

of providing additional protection against variations in quality of the units sampled. In CSP-3, 

once the first defective unit is detected, the next four units are inspected. Should another defect 

 
4 Average Outgoing Quality Limit, AOQL. The maximum AOQ over possible values of fraction nonconforming for incoming 
products for a given acceptance sampling plan (Schilling and Neubauer, 2017) (also see section 5.2.2.2.). 
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be found among these four units, inspection reverts to 100%. However, if all four units are defect 

free, the CSP-3 plan continues as in CSP-2, and the next k units are sampled (see Juran, 1988; 

Dodge and Torrey, 1951; see also Antila, et al. 2008).  See Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Diagram for Continuous Sampling Plan 3 – CSP-3. Source: Adapted from (Antila, et al. 2008).  



Risk Based Sampling 
 

44 | P a g e  

 

4.5.2. Using the Continuous Sampling Plan for phytosanitary purposes  

As indicated earlier, different plant protection or border inspection services use Continuous 
Sampling Plans in their inspection procedures for acceptance of different products. Below we 
provide some practical examples. 

In the United States, the National Plant Protection Organization, USDA-APHIS Plant Protection 

and Quarantine (PPQ) utilizes different types of risk-based sampling plans, including ratings-

based and continuous sampling plans.  Ratings-based plans adjust inspections based on a 

commodity’s analytically derived risk ranking. Continuous sampling plans reduce inspections 

after an importer achieves a predetermined number of sequential pest-free shipments (APHIS- 

USDA 2019). 

These approaches to risk-based sampling were successfully tested during a 2-year a pilot at the 

PPQ Plant Inspection Stations, on plants for planting. They will be evaluated in the future in 

collaboration with the U.S. Department of Homeland Security Customs and Border Protection 

(CBP) for risk-based sampling of agricultural commodities arriving at U.S. ports of entry (APHIS- 

USDA 2019). 

Australia has implemented the Compliance-Based Inspection Scheme (CBIS) through the 

application CSP methodology. CBIS uses historical data from selected pathways to reward 

consistently compliant importers through reduced inspections. This is an evidence-led and risk-

based approach that allows the targeted re-allocation of inspection resources to higher risk 

pathways without compromising overall biosecurity outcomes.  

 

According to the Australian Government, Department of Agriculture Water and Environment 

(2021), CBIS rewards importers of products who demonstrate consistent compliance with 

Australia’s biosecurity requirements. Compliant importers benefit from the CBIS through 

smoother and more agile clearance of goods at the border and reduced regulatory costs. Once 

an importer has qualified under the CBIS, compliance of any future consignments will continue 

to be monitored under risk-based inspection rates at the line level and range from 10 to 50 % 

frequency. If a non-compliance is detected during the inspection or documentation assessment, 

the importer will return to 100 % inspection until they have once again demonstrated compliance 

and met the number of inspections required to re-qualify for the CBIS. 

 

The inspection service in Mexico uses CSP-3 plans with protection levels of 95, 80 and 50%. 

Several manuals for inspecting seeds, grains, fruits and vegetables, dehydrated products, cut 

flowers and fresh foliage, and propagative plant material were developed by Ramírez Guzmán 

and López Tirado (2006 and 2007); see also Ramírez Guzmán 2017.  
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Analysis of the outcomes of implementing CSP-3 (Schilling, 1982) for low-risk importers in Mexico 

in 2013, demonstrated a 49.78% cost savings for inspection. The analysis assumed a CSP-3 

scheme for importers with at least 3 years of zero quarantine pest detections (Ramírez Guzmán 

2017).  

Figure 12 show the characteristic operational curves for sampling frequency f=1/p, for f=0.20, 

0.00418 and 0.001, with i=300 (i represents consignments that would be pest free after 

inspection at 100%) and k=4 (when a defective unit is found in 4 shipments, the next k successive 

units must be inspected, for this case k=4) for 95, 80 and 50% confidence, respectively, are 

shown.  

 

 Figure 12. Characteristic operational curves for CSP-3 under different assumptions: 95%: i=300, f=0.02 and k=4, 

80%: i=300, f=0.00418 and k=4 and 80%: i=300, f=0.001 and k=4. 

As can be observed (Figure 12), the three curves have a probability of rejection of 95, 80 and 50% 

at the height of p=0.03, which was what was expected according to Appendix H. 

4.5.3. Example for CSP-3 

Suppose that the NPPO of a particular country wishes to implement CSP-3 for a company that 

has presented up to 387 consignments without pests; from Appendix I we would expect that 

historical records would show, at most p1=0.015, which means that the proportion of 

consignments that have had positive pest finds has been at most 1.5%.  
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Figure 13. Sampling plan CSP-3: f=0.02, i=300 y k=4. 

 

Following, one would select a sampling scheme from Appendix H. Let’s suppose that the 

following sampling plan is selected (all plans where estimated with Monte Carlo simulation): 

 

f=0.020, i=300 y k=4                                              (1) 
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This plan guarantees that if the process of generation of consignments begins to deteriorate, to 

the point of arriving at a subset of consignments with quarantine pests of p=0.03 (3%) this 

guarantees that consignments that do not meet with the original value of p=0.015 (1.5%) will be 

rejected with up to 95% probability. However, if one selects the plan: 
 

f=0.00418, i=300 y k=4                                             (2) 
 

They will be rejected with 80% and with 50% probability if one works with the following (3) plan: 
 

f=0.0010, i=300 y k=4                                              (3) 
 

Supposing that the plan (1) is selected, then the respective flow diagram would be the one shown 

in Figure 13. 

  

As a conclusion, the application of CSP avoids 100% inspection of consignments of companies 

that for an acceptable period (for example three years) have consistently been free of quarantine 

pests. This strategy improves plant health, because the rejection of a consignment will incentivize 

the producer to take appropriate measures to ensure that his consignments are free of 

quarantine pests. This sampling methodology offers the opportunity for importing countries to 

make better decisions considering the proportion of consignments with quarantine pests, and 

the level of desired protection (Pr). In other words, using CSP sampling allows the selection of a 

sampling plan with a pre-determined level of confidence to reject consignments that do not meet 

the phytosanitary specifications. 

 

 

Phytosanitary inspection (using a hand lens) of Hass avocado prior to export.   
Source - https://www.senasa.gob.pe/senasacontigo/ica-inspeccion-fitosanitaria-de-palta-hass-para-exportacion-a-

china/ 

https://www.senasa.gob.pe/senasacontigo/ica-inspeccion-fitosanitaria-de-palta-hass-para-exportacion-a-china/
https://www.senasa.gob.pe/senasacontigo/ica-inspeccion-fitosanitaria-de-palta-hass-para-exportacion-a-china/
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5. DESIGNING, IMPLEMENTING, AND 

MAINTAINING A RISK-BASED SAMPLING 

PROGRAM 
Barney Caton1, Andrew Robinson2 

1. Pest Exclusion Analysis Coordinator, Phytosanitary Advanced Analytics Team (PAAT). Center for Plant   
     Health Science and Technology. Plant Protection and Quarantine, USDA 
2. Director, CEBRA, School of Biosciences - Reader & Associate Professor in Applied Statistics Australia 

5.1. Introduction 

This chapter describes the processes that a plant or animal health protection organization can 

use to develop or refine a risk-based sampling (RBS) program for one or more pest pathways. The 

three major steps in that process are 1) design, 2) implementation, and 3) maintenance.  Design 

refers to the development of the RBS program itself, or the identification of a suitable existing 

RBS program.  Implementation is the process of preparing for and then initiating the RBS program 

on particular pathways. Maintenance describes the means by which the RBS program is 

monitored and adjusted over time to ensure that the objectives are being met and that 

safeguarding is effective. 

Before beginning, we must agree that a sampling plan is needed to determine what sample size 

to select. An RBS program may include multiple sampling plans that are used depending on the 

history of inspection outcomes, or other risk factors. One of those sampling plans will always be 

normal inspection and additional plans will be either (i) reduced inspection, based on having met 

standards for higher product quality, or (ii) tightened inspection, based on having failed to meet 

certain standards.  In this chapter we discuss how to create an RBS program including sampling 

plans for normal and reduced inspections and tightened inspection if desired.  

The reasons for a National Plant Protection Organization (NPPO) to have an import inspection 

program include, in no particular order: 

• gathering information about the pathway 

• verifying compliance of imported goods (and make decisions about their enterability) 

• intercepting potential plant health pests and diseases, or regulated goods that could carry 

them 

• deterring malfeasance by producers and importers 
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For example, in Australia, the primary objective of inspections by the Department of Agriculture, 

Water and the Environment is to verify the compliance of the consignment with biosecurity 

regulations. Likewise, the NPPO of the United States has used sampling for detection for decades. 

More recently, agency experts agree that sampling for detection has limited phytosanitary and 

risk management value (see PPQ, 2016). Currently, the U.S. NPPO is shifting focus to value 

inspection for information and amplify the analytical potential of inspection results to improve 

and defend the role of exclusion in risk management (PPQ, 2016). This approach uses statistically 

designed randomized inspections. Although we focus on plant health biosecurity in this chapter, 

RBS programs can be used in exactly the same way for animal health protection (see Hood et al., 

2019), or the safety of food and other products (see Mamber et al., 2018). 

Why would an NPPO want to implement RBS? The trade- and standards-based rationales for 

using RBS were covered in the RBS manual Part I, as well as detailed descriptions of the 

advantages of using a more consistent procedure for sample size determination. In addition to 

those benefits, implementing an RBS program should directly improve inspection operations in 

two or more of the following ways: 

1. Reduce the amount of (inspection) resources used on lower risk consignments 

2. Provide incentives to producers and importers to improve the phytosanitary status of 

traded goods 

3. Reallocate the resources needed for inspection of higher risk consignments 

4. Reduce pests in the pathway or increase the number of pest detections in the pathway. 

 

Goals 1 and 2 should occur as a consequence of designing and implementing an RBS program and 

may be what most NPPOs would like to achieve, while goal 3 must be explicitly built into an RBS 

program. Keep in mind that focusing only on goal 1 while maintaining normal sampling intensities 

on the rest of the consignments is likely to increase leakage of pests. Reducing leakage (goal 4) 

requires some producers and importers to increase conformity rates in response to incentives 

(i.e., reduced inspection). If an NPPO would like to achieve goal 4, then goal 3 should be a 

requirement for their RBS program design. This observation highlights the importance of 

assessing the performance of a program across multiple pathways, rather than in a piecemeal 

fashion.  

The first step towards implementing an RBS program might be different for every NPPO. Because 

of this, we first present some characteristics that an agency’s current inspection program should 

have and introduce newer features they may want to consider adopting. Next, we introduce two 

example, standard RBS programs, that are based on cumulative results. This type of approach 

uses recent inspection history to inform interventions at the border.  
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The bulk of the chapter describes the major steps to develop/refine a risk-based sampling (RBS) 

program for one or more pest pathways — namely, design, implementation, and maintenance. 

Throughout this section, we illustrate each step using the two standard RBS schemes in 

hypothetical case studies. 

We note in passing that another type of RBS program is ratings-based, which is an approach that 

relies on statistical models of performance. At the end of the chapter, we briefly explain how 

ratings-based programs differ in design and discuss some advantages and disadvantages they 

have over cumulative results plans, including special considerations for model choice and ratings 

formulation. 

5.2. Standard RBS programs – acceptance sampling 

Sampling programs used to provide assurance that incoming commodities conform to some 

quality standard - like pest freedom - are generally known as acceptance sampling schemes (see 

Stephens, 2001). The objective of acceptance sampling for lots5 is to ensure that producers 

submit lots that do not exceed an agreed-to level of nonconformities, which ensures that 

consumers receive lots that are acceptable (ISO, 2017). More simply stated, acceptance sampling 

facilitates the decision on whether to accept or reject a lot so that accepted lots conform to a 

standard (see ISO, 2013).  

Acceptance sampling is used in many industries and military organizations, and it has been 

extensively studied since the early 1900s (Chen et al., 2017; Schilling and Neubauer, 2017). 

Statisticians and quality management experts have developed numerous acceptance sampling 

plans to address different inspection goals, pathways, or specific situations. Some pertain directly 

to agricultural imports, and we discuss below two pre-tested acceptance sampling plans as using 

these will be the simplest and most efficient way to implement an RBS program.  

5.2.1. General concepts and definitions 

Here we discuss some key concepts and definitions for RBS programs. Many of these have already 

been defined in Part I of the RBS manual. 

Starting in section 5.2.4 below, this chapter follows a detailed discussion of two different RBS 

plans: 

• MIL-STD-1916 and  

• Skip-Lot Sampling  

 
5 In contrast, some acceptance sampling plans exist for inspection of units. Among the best known of these are ‘continuous 
sampling plans’ (also see section 4.5), which refer specifically to the inspection of individual units coming out of assembly line-
type production processes (see Dodge 1943). These plans will not typically apply to the phytosanitary activities discussed here. 
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Both are cumulative results sampling plans, where future sampling levels are determined based 

on how many preceding lots have cleared without nonconformities since the last nonconformity 

was found in a lot (see Schilling and Neubauer, 2017).  

In addition, both are sampling plans for attributes (see Stephens, 2001). This means we are 

sampling to answer a yes or no question about a particular attribute (for example, does the lot 

have regulated pests?). We might classify inspected items as conforming (pest-free, or free from 

other compliance problems) or non-conforming (infested with an actionable pest or having some 

other compliance issue). The alternative to attribute sampling is sampling for a variable, which 

involves some form of measurement (for example, how pure is this drug?).  

In acceptance sampling, a distinction is made between a nonconforming lot and the items in the 

lot that caused the nonconformity. Such items are deemed to be defective so one can refer to 

some number of nonconforming lots with varying numbers of defective items. In phytosanitary 

terms, we make a distinction between actionable lots (or quarantine failures) and infested items 

(defective items).  

Below are a few useful definitions, common specifications (parameters), or metrics used in 

acceptance sampling. 

• Acceptance quality limit, AQL. The maximum percent nonconforming that can be 

considered satisfactory as a process average for the purposes of sampling inspection (ISO, 

2013). 

• Acceptance number, c. The number of infested units or the number of individual pests 

that are permissible in a sample of a given size before phytosanitary action is taken (IPPC, 

2008). For lots that comprise industrial products (e.g., components, parts, or ‘widgets’ 

generally), non-zero c values of nonconforming products in the sample may still indicate 

sufficient quality for that lot to be accepted (Stephens, 2001). In phytosanitary work, 

though, c will likely always be equal to zero, because allowing the entry of even one pest 

is deemed unacceptable. Plans with c = 0 are sometimes collectively called “zero 

acceptance plans.” 

• Clearance number (Clearing interval), i. The number of successive lots that must be 

inspected and cleared with no nonconformities before a switching rule is invoked 

(Stephens, 2001).  

• Efficacy of detection. The probability that an inspection or test of a defective unit(s) will 

detect the problem (IPPC, 2008). This is also called the sensitivity of inspection. In many 

cases this value will be less than 100 percent. We include this definition here for 

completeness, but we have not factored it into our examples below.   

o Hypergeometric distribution. A function that gives the probability of obtaining 

exactly x elements of one kind and n - x elements of another if n elements are 
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chosen at random without replacement from a finite population containing N 

elements (see Roberts et al., 2015; Vose, 2000). This type of scenario is very 

common, such as in human epidemics, herd testing, and surveys. 

• Leakage (slippage).  The number of accepted nonconforming items in a lot or a series of 

lots (Chen et al., 2017) (also see Glossary in RBS manual Part I). 

• Lot (shipment). A number of units of a single commodity, identifiable by its homogeneity 

of composition, origin etc., forming part of a consignment (IPPC, 2008). 

• Lot size, N. The total number of units of product in the lot (ISO, 2018). Lot size is controlled 

by the importer, not by the agency (EPPO, 2006) (also see Glossary in RBS manual Part I). 

• Operating characteristic curve (OC curve). Expected probability of acceptance for a lot or 

a series of lots under a given sampling plan (or scheme) as a function of the fraction 

nonconforming (quality level) (see Figure 14 for an example) (Schilling and Neubauer, 

2017; Stephens, 2001). 
 

 

Figure 14. Three operating characteristic curves, or probabilities of accepting a lot (N = 1,000) as a function of fraction 

nonconforming for three different sample sizes (n). 

• Probability of acceptance, Pa. The probability that a given sampling plan will accept (i.e., 

clear or not reject) lots at a given fraction nonconforming (or quality level). 

• Proportion of defective units, d. The mean fraction of defective units in a nonconforming 

lot.  

• Reduced inspection. Decreased sampling, either in intensity or frequency, based on 

demonstrated product quality that has met set standards. 

• Reference sampling plan. The normal (i.e., unaltered) procedure for determining sample 

size for a lot (after Stephens, 2001). 
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• Sample size, n. The number of units selected from a lot that are inspected or tested (IPPC, 

2008). 

• Switching rule. An instruction within a sampling scheme for changing from one 

acceptance sampling plan to another of greater or lesser severity of sampling based on 

the demonstrated quality history (ISO, 2006). Typically, schemes have switching rules to 

move between normal, tightened, and reduced inspection plans. 

• Tightened inspection. Increased sampling, either in intensity or frequency, based on 

demonstrated product quality that has exceeded standards set for normal inspection 

levels. 

5.2.2. How much sampling to do? 

Below we describe two different but related approaches to determine the appropriate sampling 

size. The first is based on the hypergeometric distribution (see Table 4 below and Appendix 2 in 

RBS manual Part I). The second uses the Operating Characteristic (or OC) curve to assess impacts 

on the outgoing quality of lots (see Figure 15 below). Both approaches are fundamentally 

hypergeometric processes.  

5.2.2.1. Hypergeometric distribution approach.  

This approach based on the hypergeometric function uses the following two parameters 
(Fosgate, 2009; IPPC, 2008) (Table 4; see Appendix for equations): 

• Acceptable nonconformity fraction, pRef. The chosen (reference) minimum level for the 

proportion of incoming lots that are not acceptable (Stephens, 2001) (i.e., agencies wish to 

detect nonconformities at this level or greater). In phytosanitary terms, this is the level of 

detection or the proportion of lots infested with pests. Sometimes it is also referred to as 

quality level or pest action rate or, in hypergeometric tables, as the acceptable risk level 

(Anonymous, No date). 

• Confidence level, CRef. The reference certainty of detecting a nonconformity at a given 

nonconforming fraction value (Daniel and Cross, 2013), or the probability that a lot with a 

fraction of defectives exceeding the level of detection will be detected (IPPC, 2008). Thus, 

95 percent confidence means that, for lots with a given fraction nonconforming, 95 out of 

100 would be detected.  

 

Note that pRef and CRef provide information about the detection level for a single inspection. 

Determining how this would translate into the performance of a sampling plan over a number of 

lots would most likely require a simulation modeling approach. This helps to explain why 

standard acceptance sampling plans rely exclusively on the OC curve approach. 
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Finally, we distinguish between pRef and p (proportion of lot). As indicated above, pRef is the 

estimated fraction nonconforming in lots subject to inspection, or the operational estimate of 

the quality of incoming lots. The estimated p could sometimes be greater than pRef, for low quality 

products. Also, the mean proportion defective, d, is different from pRef. It indicates the mean 

fraction of items in the lot that are defective. 
 

Table 4. Partial reproduction of the hypergeometric sample size table for lot size = 1,000, based on confidence level 

and acceptable risk level, from Anonymous (No date).  

Acceptable risk level (pRef) Confidence level (CRef) 
 

0.8 0.85 0.9 0.95 0.99 0.999 

0.0001 1,000 1,000 1,000 1,000 1,000 1,000 

0.0002 1,000 1,000 1,000 1,000 1,000 1,000 

0.0003 996 999 1,000 1,000 1,000 1,000 

0.0004 983 992 998 1,000 1,000 1,000 

0.0005 961 978 991 998 1,000 1,000 

0.0006 932 958 979 994 1,000 1,000 

0.0007 900 934 963 987 999 1,000 

0.0008 867 907 944 977 997 1,000 

0.0009 833 879 923 965 995 1,000 

0.0010 800 850 900 950 990 999 

0.0020 553 613 684 777 900 968 

0.0030 415 469 536 631 784 900 

0.0040 331 378 438 527 683 821 

0.0050 275 316 369 450 601 748 

0.0060 235 271 318 393 535 683 

0.0070 205 237 280 348 481 626 

0.0080 182 211 250 312 437 577 

0.0090 164 190 225 282 399 534 

0.0100 148 173 205 258 368 497 

0.0200 77 90 108 138 204 290 

0.0300 52 61 73 94 141 203 

0.0400 39 46 55 71 107 156 

0.0500 31 37 44 57 86 126 

0.0600 26 31 37 48 72 106 

0.0700 22 26 32 41 62 91 

0.0800 20 23 28 36 54 80 

0.0900 17 20 25 32 48 71 

0.1000 16 18 22 29 43 64 
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5.2.2.2. Operating Characteristic (OC) curve approach.  

In this approach, either or both of the following parameters could be used (Stephens, 2001): 

• Average Outgoing Quality, AOQ. The expected average quality level of the outgoing product, 

or mean fraction nonconforming in released lots, for a sampling plan for a given fraction 

nonconforming of the incoming product (Schilling and Neubauer, 2017) (Figure 15). Because 

AOQ varies with p, which is unknown, summarizing it is not simple.  

• Average Outgoing Quality Limit, AOQL. The maximum AOQ over possible values of fraction 

nonconforming for incoming products for a given acceptance sampling plan (Schilling and 

Neubauer, 2017) (Figure 15). This can be further defined on either a unit- or lot-basis: 

AOQL1 = unit AOQL, which is the upper bound on the long-run mean proportion of 

defective outgoing product units (on a sampling unit basis). 

AOQL2 = lot AOQL, which is the upper bound on the long-run mean proportion of 

nonconforming outgoing lots, or lots that would have failed the reference plan. 

Some values for AOQL as a function of n are given in Table 5. The acceptance sampling reference 

books by Stephens (2001) and Schilling and Neubauer (2017) include several spreadsheet files for 

calculating these values for different sampling plans. 

 

 

Figure 15. The average outgoing quality (AOQ; blue line and symbols) as a function of fraction nonconforming, with 

the average outgoing quality limit (AOQL) indicated by a dashed red line, and a dashed black line showing mean AOQ 

over the range from 0 to 0.1. Values shown are for lot size (N) = 1,000, and sample size (n) = 48. 
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Table 5. Average Outgoing Quality Limit (AOQL) for given sample sizes, n, over different lot sizes, N. 

n AOQL 

 Lot size (N) 

 500 1000 5000 10000 

10 0.0361 0.0364 0.0367 0.0368 

20 0.0177 0.0180 0.0183 0.0184 

30 0.0115 0.0119 0.0122 0.0122 

40 0.00846 0.00883 0.00912 0.00916 

50 0.00662 0.00699 0.00728 0.00732 

60 0.00540 0.00576 0.00606 0.00609 

70 0.00452 0.00489 0.00518 0.00522 

80 0.00386 0.00423 0.00453 0.00456 

90 0.00335 0.00372 0.00401 0.00405 

100 0.00294 0.00331 0.00361 0.00364 

110 0.00261 0.00298 0.00327 0.00331 

120 0.00233 0.00270 0.00299 0.00303 

130 0.00209 0.00246 0.00276 0.00279 

140 0.00189 0.00226 0.00255 0.00259 

150 0.00172 0.00208 0.00238 0.00242 

160 0.00156 0.00193 0.00223 0.00226 

170 0.00143 0.00180 0.00209 0.00213 

180 0.00131 0.00168 0.00197 0.00201 

190 0.00120 0.00157 0.00186 0.00190 

200 0.00110 0.00147 0.00177 0.00180 

210 0.00102 0.00138 0.00168 0.00172 

220 0.000936 0.00130 0.00160 0.00164 

230 0.000864 0.00123 0.00153 0.00156 

240 0.000797 0.00117 0.00146 0.00150 

250 0.000736 0.00110 0.00140 0.00143 

260 0.000679 0.00105 0.00134 0.00138 

270 0.000627 0.000995 0.00129 0.00133 

280 0.000578 0.000946 0.00124 0.00128 

290 0.000533 0.000901 0.00120 0.00123 

300 0.000491 0.000858 0.00115 0.00119 

5.2.3. Examples 

Here we demonstrate how each approach mentioned above can be used to identify the level of 

detection for particular sampling plans, report the impact on the needed effort, and indicate how 

they relate to one another. In all cases the lot size (N) is 1,000 units.  
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Example 1. If the NPPO wishes to have a confidence level (CRef) of 95 percent and an acceptable 

risk level (pRef) of 6 percent (0.06), using the hypergeometric function approach (Table 4), then 

we determine that the number of samples needed for the lot size of 1,000 is 48 samples.  

Working backwards from n, we can find the equivalent using the OC curve approach. We include 

this here to facilitate comparison. Using the OC curve approach, n = 48 gives an AOQL1 of 0.0073 

(0.73 percent) [see Eqn. A5 in Appendix A].  

Example 2. If the NPPO wishes to have a mean AOQL of 0.001, then n is approximately 265 (Table 

5). [In more exact terms, n = 268.]  

Again, working backwards from n, in terms of the hypergeometric function, n = 265 corresponds 

to multiple combinations of CRef and pRef , but if we choose CRef = 0.95, then pRef is approximately 

0.0097 (Table 4), or about 1 percent. As sample size increases, the level of detection achieved 

also increases.  

5.2.4. Two examples of standard RBS plans  

The chapter will use two examples of RBS plans that can be applied to pathways or lots.  In MIL-

STD-1916, every lot is inspected but with differing degrees of intensity. In Skip-Lot Sampling, as 

the name implies, the inspection effort is reduced by clearing some lots without inspection, but 

all remaining lots are inspected with the same degree of intensity.  

5.2.4.1. MIL-STD-1916 - all lots inspected; some with reduced sampling intensity 

This approach consists of three sets of matched sampling plans for lots, indexed by seven 

different verification levels, or quality standards (Department of Defense, 1996).6 The three 

sampling plans are normal, reduced (or lowered) and tightened, with adjustments affecting 

sample size or sampling intensity (i.e., every lot is inspected).  

Sample sizes are determined using a table (reproduced below as Table 6) based on: 

1. The desired verification level (baseline level of detection) 

2. The reference sampling plan 

3. Lot size - indicated by code letters (A-E).  

 

The switching rules between the three plans is as follows: 

• Normal to tightened - 2 nonconforming lots have been found in the last 5 or fewer lots 

 
6 Note that the approach also contains a continuous sampling plan section, but this is for application to units and not lots, and so 
is irrelevant to most phytosanitary inspections. 
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• Tightened to normal - 5 consecutive lots have been accepted (ideally with some indication 

of the quality issue was rectified) 

• Normal to lowered - 10 consecutive lots have been accepted while on normal inspection 

(and assuming regular volumes of largely homogenous products) 

• Lowered to normal - nonconforming lot has been found (or, perhaps, volume becomes 

irregular or stops, or other information indicates production problems or quality issues) 
 

Beyond that, a new sampling plan for a change towards tightened inspection (i.e., a larger sample 

size) is simply the next higher verification level in Table 6, or, for a change towards reduced 

inspection (i.e., a smaller sample size), the next lower verification level in Table 6 (Department 

of Defense, 1996). In summary, Table 6 describes all seven sampling plans which might be 

chosen. 

To illustrate, the 48-unit sample for a lot size of 1,000 applied to MIL-STD-1916 corresponds to 

verification level III (reference sampling plan) (Table 6). Tightened inspection (verification level 

IV) for the same lot size gives a sample size of 128, while a lowered inspection (verification level 

II) gives a sample size of 20 (Table 6).7 In this example, the inspection savings from lowered 

inspection with MIL-STD-1916 is from examining 28 fewer units per lot but continuing to inspect 

every lot. 

Table 6. Reproduction of Table II in MIL-STD-1916 for determining sample size based on the verification level (T-R) 

and lot size (Code letter) (Department of Defense, 1996). The sampling plan for lowered inspection is one verification 

level to the right of the default verification level chosen (reference sampling plan), while that for tightened inspection 

is one verification level to the left. 

Code letter Verification Levels 

 T VII VI V IV III II I R 

A 3072 1280 512 192 80 32 12 5 3 

B 4096 1536 640 256 96 40 16 6 3 

C 5120 2048 768 320 128 48 20 8 3 

D 6144 2560 1024 384 160 64 24 10 4 

E 8192 3072 1280 512 192 80 32 12 5 

5.2.4.2. Skip-lot sampling - not all lots inspected; consistent inspection intensity among 

lots 

Skip-lot sampling8 is defined as a “sampling inspection procedure in which some lots in a series 

are accepted without inspection when the sampling results for a stated number of immediately 

preceding lots meet stated criteria” (ISO, 2005). The purpose of skip-lot sampling “is to provide a 

 
7 In alternative terms, a sample size of 148 equates to 95 percent confidence in finding a fraction nonconforming of 2 percent, 
while a sample size of 20 is 95 percent confidence in finding a fraction nonconforming of 14 percent. 
8 This should not be confused with continuous sampling plans, which are similar approaches but applied to individual units—not 
lots or batches—coming from an assembly-line-like process (ISO, 2005). (See Continuous Sampling Plans (CSPs) in section 4.5) 
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way of reducing the inspection effort on products of high quality submitted by a supplier who has 

a satisfactory quality assurance system and effective quality controls”. Often, NPPOs may 

substitute knowledge that agricultural production and processing tend to reduce pest presence 

in products as a proxy for direct, documented information about producers’ or shippers’ quality 

assurance systems and controls.  

Reduced inspection is achieved by randomly determining, at a specified probability, if an 

incoming lot that qualifies for reduced inspection will be accepted without inspection. Thus, the 

unique parameter to be set for skip-lot sampling is the inspection frequency (f) which is the 

proportion of lots that will be sampled (on average) using the reference sampling plan when lot 

skipping is active (Stephens, 2001; ISO, 2005). Because the reference sampling plan is used for 

every inspection, data collection in skip-lot sampling approaches is more consistent than in 

reduced intensity approaches. Moving forward, we will refer to the reduced inspection level(s) 

in this scheme as ‘skipping inspection,’ and to normal inspection as qualifying inspection.  

ISO standard 2859-3 specifies that qualification for skipping inspection uses a constant clearance 

interval, i = 10, as well as a second standard, called the qualification score (see ISO, 2005). It also 

sets the minimum achievable value of f = 0.2, stepping down through f values of 0.5, 0.4, and 

0.3.9  

In our examples we will use the more flexible approach described as SkSP-2 (Skip-Lot Sampling 

Plan 2) by, for example, Stephens (2001) and Schilling and Neubauer (2017). Using SkSP-2, one 

can devise specialized inspection approaches that meet the desired AQL or AOQL (Table 7), and 

that could use values of i other than 10, and perhaps f values below 0.2, if deemed appropriate.  

The switching rules are as follows:10 

• Qualifying to skipping: i consecutive lots are accepted (i.e., no nonconformities) while on 

normal inspection  

• Skipping to qualifying: A nonconforming lot is found  
 

While the interval when the consecutive inspections should occur is not technically specified, the 

general guideline, as in MIL-STD-1916, is that shipping volume should be fairly continuous. 

Agencies could adopt procedures to reset inspection levels after periods of inactivity or set a 

minimum number of lots per particular time, if they desire. 

 
9 The ISO plan also recommends against using c = 0 plans, reportedly because they have “poor switching characteristics” 
compared to plans with c ≥ 1. For arguments in favor of c = 0, see Department of Defense, 1999). 
10 A ‘tightened’ option is typically not included in these schemes, since increasing f above 1 is not possible. Such an option might 
be built by increasing sampling intensity (altering the reference plan) under specified circumstances. 
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As an example, a SkSP-2 plan could specify i = 10 and f = 0.4, with a second level of f = 0.1 reached 

after a further i = 10 acceptances. Using the example reference sampling plan from above (CRef = 

0.95, pRef = 0.06; or AOQL = 0.0073), every inspection for N = 1,000 will have n = 48 samples.  

A product with 10 consecutively accepted lots would change from qualifying to skipping 

inspection.  At level one, with f = 0.4, each lot would have a 4-in-10 chance of being inspected, 

or, equivalently, a 6-in-10 chance of being accepted without inspection.11 The corresponding 

AOQL for that level of inspection is 0.035 (Table 7).  The increase in AOQL under SkSP-2 compared 

to the AOQL for the reference plan reflects leakage because of skipping.  After another 10 

inspected lots have been accepted, the product would move to the second skipping level, with 

only a 1-in-10 chance for inspection. That level of inspection has an AOQL of 0.052 (i = 10 + 10 = 

20; Table 7). 

Table 7. Approximate values for the Average Outgoing Quality Limit, AOQL, for skip-lot sampling plans with different 

clearance numbers (i) and inspection frequencies (f), based on equations in Stephens (2001). 

Clearance number, i Inspection frequency, f 

 0.5 0.4 0.3 0.2 0.1 

8 0.032 0.043 0.058 0.081 0.121 

10 0.026 0.035 0.048 0.065 0.099 

12 0.022 0.029 0.039 0.056 0.083 

14 0.019 0.026 0.035 0.047 0.073 

16 0.016 0.022 0.031 0.042 0.064 

18 0.014 0.019 0.027 0.038 0.056 

20 0.013 0.017 0.023 0.034 0.052 

5.2.4.3. Other sampling plans 

Numerous other standard plans exist and could be used. Good sources of information, 

particularly about zero acceptance sampling plans (see ‘acceptance number,’ above), include the 

following - Shmueli, 2016; Squeglia, 2008; Stephens, 1995. 

 
11 Note that probabilities should be used as such. For products in the skipping inspection phase, every time a lot arrives, inspection 
vs. acceptance should be determined randomly. In other words, a 1-in-10 chance (f = 0.1) must not be operationalized as “Inspect 
the first lot and skip the next nine.” The average inspection frequency over time will equal f, but over short intervals it could 
deviate substantially (e.g., 3 or 4 lots in a row selected for inspection). The ISO 2859 standard has an appendix with practical 
descriptions of how agencies can randomize selections (ISO, 2005). 



Risk Based Sampling 
 

61 | P a g e  

 

5.3. Assessing current sampling operations 

5.3.1. Basic features of an inspection program  

Before an NPPO should consider adopting an RBS program, their existing inspection program 

needs need to be identified and understood. This is preparation (i.e., step 0) for implementing 

an RBS program. 

5.3.1.1. Existing inspection programs 

An NPPO should already be regularly conducting import inspections on the pathway(s) of 

interest.  Trained personnel and infrastructure for inspection should be in place, as well as 

mechanisms for data and shipment processing. Implementation of an RBS program will be easier 

if the NPPO is already using inspection data for targeting or monitoring the pathway.  

Inspection is never 100 percent effective (see Yamamura et al., 2016).  Because of this, NPPOs 

expect that the cumulative effect of all phytosanitary measures, including inspection, will reduce 

propagule pressure to an acceptable level of protection. This helps ensure that any problematic 

pest or disease organisms that gains entry into a country is isolated and rare enough that a 

population will not be able to establish (survive and reproduce) (Blackburn et al., 2011). The 

assemblage of risk mitigating actions has been called the biosecurity (Beale et al., 2008) or 

safeguarding continuum (see PPQ, 2015), and it is important to note that import inspections play 

only a small part (Figure 16) in the continuum. 

In addition to having an inspection program in place, the pathway(s) of interest should have a 

reasonable volume of consignments. Without substantial volumes of goods to inspect, 

substantial numbers of entities/commodities may not qualify for reduced inspections, due to a 

lack of statistical significance or not reaching cumulative thresholds. In that case, the benefits of 

adopting RBS programs may not be worth the effort required for implementation and 

maintenance. The meaning of reasonable volume may vary, but would be met if, for example, 

the number of lots inspected each year numbered in the upper hundreds or thousands. 
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Figure 16. Schematic of the Safeguarding Continuum by which multiple measures and actions are used to manage 

the risk of introduction and spread of non-native pests and diseases. 

5.3.1.2. Reference sampling plans 

A reference sampling plan is used for choosing the sample size to inspect a routine lot. The sample 

size needs to be specified, because an RBS scheme may adjust the reference sampling plan in 

some way (e.g., reduced sampling intensity).  

Reference plans may be defined within a standard plan or may be customized. An example of a 

standard-based reference plan will be presented below. For a customized example, in Australia 

many plant product inspections conducted by the Dept. of Agriculture and Water Resources 

(DAWR) use a hypergeometric table to calculate the sample size based on a 95 percent 

confidence of finding a 0.5 percent infestation (Robinson, 2018). Hypergeometric sample sizes 

depend on the size of the lot, but for a lot size of 1,000 that customized reference sampling plan 

gives a sample size of 450 (Table 4).  

In contrast, the U.S. Dept. of Agriculture, uses a reference sampling plan based on 95 percent 

confidence in detecting a 5 percent infestation rate. Under this plan, a lot size of 1,000 would 

require a sample size of 57 (Table 4).  

5.3.1.3. Incoming consignment information 

Most NPPOs collect information about incoming consignments in order to document possible 

pest pathways and capturing information for more efficient inspection schemes is a secondary 

concern. But in an RBS program information becomes a primary concern because inspectional 

status depends explicitly on historical information about the commodity and, perhaps, about the 
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entities involved. Here we assume that details concerning the plant products, including name 

(scientific or common), quantity and units of measure, and country of origin are routinely 

recorded by NPPOs. When the United States initiates trade in a new plant commodity, the 

information requirements include the “Globally Unique Product Identification Code” (APHIS, 

2016). 

NPPOs also need to identify and collect any additional information required for their RBS 

program. Formalizing the collection of information about producers or importers is one possible 

example. Once identified, the information might be a mandatory data requirement from 

importers of those products. The data collection system may need to be enhanced/modified to 

accommodate new data field(s). For example, the USDA-APHIS-PPQ recently started collecting 

data on ‘type of propagative material’ (e.g., rooted plant, unrooted cutting) imported, which is 

useful for its RBS program.  

5.3.1.4. Recording inspection results 

Here we provide an overview of the commonly recorded data related to inspection outcomes. 

NPPOs may or may not choose to record this data, depending on objectives and activities. A 

possible template for collection of some useful inspection data can be seen in section 3.1, above.  

Inspection outcomes. This is the most basic/critical piece of information to be collected during 

inspection: that is, whether or not the lot or commodity was infested by a pest of concern. 

Counting the number of pest actions in recently inspected lots is a common and mathematically 

straightforward way of determining inspection levels in a number of standard RBS plans.  

It is important to note that all detected pests may not be equally relevant (see Yamamura et al., 

2016). Pests can be (i) those that are “in or on” the commodity, or known to use the commodity 

as a host, or can be (ii) hitchhikers (contaminating pests), that is, those that may be associated 

with the consignment, conveyance, or packaging material, or present as a consequence of 

packing conditions in the exporting country (e.g., packing under artificial light). Whereas pests on 

the commodity are likely to be relevant to an RBS program, NPPOs will determine whether or not 

contaminating pests count toward program status determinations.  

Detections of actionable (= those that result in some regulatory action by the NPPO) pests can be 

recorded in different ways. For example, the datasheet can include a ‘pest action flag’ [the name 

is customizable], which is equal to 1 if one or more actionable pests were found in the lot, or 0 if 

no pests were found.  

Actions taken. Actionable pests may not necessarily be handled the same way. For example, the 

USDA-APHIS-PPQ uses disposition codes to indicate the type of pest-related actions taken (e.g., 

fumigated or re-exported) as well as other actions related to consignment compliance (e.g., 
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prohibited commodity, missing phytosanitary certification) (PPQ, 2018b). This information may 

be important to record for understanding trends and impacts on inspection operations, such as 

for estimating the time spent on fumigating or destroying infested lots.  

Pest information. Information on the taxonomy, life stage(s) and number of pests found helps 

NPPOs to understand the level of risk posed by pests in the pathway. The information may 

provide feedback to producers and shippers that want to improve commodity/consignment 

quality. Accurate pest identification can be challenging (see Floyd et al., 2010), because there are 

many thousands of plant pest species, one can detect life stages that are difficult to accurately 

identify (e.g., arthropod eggs), and because timely decisions on pest actions are needed for 

perishable commodities. Before considering a shift to an RBS program, NPPOs should ensure that 

they have reliable and rapid pest identification expertise relative to the volume of trade they 

experience. 

Entities. Plant product import supply chains begin with producers and suppliers in the exporting 

country, followed by import inspections, and finally with consignees/receivers in the importing 

country (Figure 17).12 It may be challenging to record data on each entity involved in a particular 

pathway. Nevertheless, NPPOs should attempt to record information for the entity level at which 

they expect to manage the RBS program (see 5.5.1.2). Pest presence and their management in 

crops seem likely to be more closely linked to producers than to suppliers and importers, but this 

is not certain (Griffin [NAPPO], personal communication). Thus, while it may seem ideal to record 

information on producers to manage the RBS program (e.g., feedback processes), in practice 

information may be more readily available for suppliers and importers. In addition, if the pathway 

includes many small-volume producers, aggregating outcomes at higher levels may be 

preferable, to increase potential eligibility for inspection reductions. An advantage of recording 

information at the level of importer may be simpler communications because they may often be 

located in-country. A disadvantage may be that although they have a choice of suppliers, 

importers are somewhat removed from production and mitigation operations and may have 

limited ability to affect management practices. 

Recording information about entities will be greatly facilitated in the coming years as the WTO-

Trade Facilitation Agreement (WTO-TF) begins requiring electronic consignment data, via the 

single window system (ECFE, 2005). 

Plan-specific information. Some information specific to the inspection scheme may need to be 

collected. This might include required codes or identifying numbers particularly if only some 

 
12 Export inspections may also be done by the exporting NPPO to produce phytosanitary certificates, but that agency is not part 
of the supply chain for the purposes of an RBS program. In other words, it is unlikely that an RBS program would be administered 
by monitoring the exporting NPPOs. 
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commodities are eligible for and processed through the RBS program and such codes are used as 

identifiers. 

 

Figure 17. An import supply chain for plant products, including inspection at the border. Solid lines represent material 

transfers while dashed lines are possible flows of information. 

5.3.1.5. Recording recent inspection results 

Most acceptance sampling plans will work best when (i) the pathway volume is reasonably 

consistent and high (hundreds of lots annually, rather than, say, dozens), (ii) producers and 

shippers are known to be fairly consistent in expected commodity quality (either good or bad), 

and (iii) commodities and their packaging are reasonably homogenous (Stephens, 2001). 

Consistency helps ensure the relevancy of recent results and maintenance of production 

practices, while high volumes confer greater potential eligibility for reduced inspections. 

Understanding the import histories of relevant entities will inform the design process and 

estimation of potential impacts. Managing homogenous products could allow more specialized 

programs to be developed and helps ensure that the inspection scheme will be both appropriate 

and manageable. 

Therefore, we suggest that the amount of data needed should be that which is sufficient to 

convince the NPPO that the above standards have been met. Later we show how to use such 
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data to estimate the impact the new RBS plan would have on overall inspection resources and 

safeguarding outcomes (see 5.5.4). For commodities with volumes that are not highly seasonal, 

six months of previous inspection results may be adequate to estimate operation variables for a 

proposed new RBS program. Current estimates of leakage would be helpful in determining 

current program efficiency, and for comparing it to estimated outcomes after implementation.  

5.3.2. Additional features for more effective RBS programs  

5.3.2.1. Dynamically updated inspection levels 

In addition to the features mentioned above that should be in place before an NPPO decides to 

implement RBS, there is an important feature that NPPOs need to plan create, preferably before, 

or at least concurrently with implementation of RBS. This feature, within data management 

system(s), would (i) automatically determine whether incoming lots are inspected at normal or 

reduced (or tightened) levels, (ii) display this information as needed, and if possible (iii) directly 

determine and display the sampling protocol to be used. In general, the larger the volume of 

imports and products in the RBS program, the more automated the data system will need to be. 

If thousands of entities or commodities are being tracked, then updating inspection status 

manually will be very resource-intensive, and prone to errors, which will undermine confidence.  

Proceeding in a stepwise fashion, the basic data systems need to display the inspection results to 

assess recent outcomes and determine how many of the last (sequential) i lots were 

nonconforming.  This data would be used to assign an inspection level to the commodity (i.e., 

invoke switching rules as needed). This involves a simple counting exercise. The challenges will 

be in having access to recent inspection data, assessing the correct series of consignments, and 

determining their status. 

5.3.2.2. Dynamic sampling inspection support 

The next optional steps are to (i) determine the effect of the level of inspection on the sampling 

plan, (ii) calculate the sample size, and (iii) randomly select the samples. Plant products subjected 

to inspection will require the reference sampling plan, but reduced or tightened inspection levels 

should be subject to a different plan, or to no sampling plan if inspection will be skipped. 

Procedural options by level of complexity (i.e., how much is done in the system vs. outside the 

system) are shown below (Table 8). 
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Table 8. Comparison of data system tasks and tasks for inspectors with increasing automation of the data system. 

The level of complexity goes from simple to complex, and the system tasks are cumulative and include all tasks above 

the selected line. 

Level of complexity Cumulative system tasks Inspector tasks 

Simple Determine and display the inspection 
level 

Determine which sampling plan is followed and carry 
out all inspection procedures, perhaps using work 
instructions 

 AND display the associated sampling 
plan 

Carry out all remaining inspection procedures, 
starting with random determination of inspection if 
warranted 

Moderately complex 
AND if inspection is a possibility, 
randomly determine whether to 
inspect the lot 

Carry out all remaining inspection procedures, 
starting with sample size determination 

 AND use information about the lot to 
calculate the sample size 

Carry out all remaining inspection procedures, 
starting with randomly selecting samples 

Complex AND use lot information to randomly 
determine which samples to select 

Remove targeted samples from the lot, inspect and 
report results 

 

None of the functions indicated above is complicated, even at the highest level of complexity; 

most are straightforward arithmetic functions. Randomization processes are often built into 

standard code systems, and sample sizes extracted from a standard table could use a lookup 

function on the master table (or tables) in the system, which can be updated, as necessary. As 

more sampling procedures are built into the system, the number of tasks performed by 

inspectors decreases. At full automation, inspectors only have to select the proper samples and 

carry out the inspection. This has obvious benefits for reducing errors and correctly selecting the 

random samples (for more on inspection errors, see Collins et al., 1973; Minton, 1972). 

5.3.2.3. Other considerations for dynamic information systems 

The considerations below refer to operational factors that each NPPO needs to address. 

Timing of updates. Ideally, the data system would operate in real-time, continuously updating 

inspection levels as inspection outcomes become available. For NPPOs dealing with large 

consignment volumes arriving at different ports-of-entry, a daily update may be sufficient.  

Longer delays between updates negatively impact RBS program responsiveness to changes in 

pest action rates and may undermine stakeholder confidence. A delayed switch to reduced 

inspection lowers efficiency as more inspections are done than are needed, while a delayed 

switch to qualification (or tightened) inspection could result in an increased risk of introduction 

via leakage. 

Timing for paperwork submission and processing. Depending on when paperwork (the manifest, 

waybill, etc.) for incoming consignments is submitted, processing timing (i.e., determining the 

inspection status of the lot) can get complicated. If an NPPO begins its process upon arrival of the 
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consignment for inspection, then its inspection status should be valid, and no mistakes should 

occur. If, however, the submission of documentation arrives a day or two before the actual 

consignment, the inspection status might have changed in the interim, and mistakes may occur. 

Possible mistakes that can occur include (i) skipping a lot that should have been inspected, or (ii) 

inspecting a lot that might have qualified for clearance without inspection. The first mistake is 

one that NPPOs will want to avoid. While under-inspections and over-inspections might balance 

out over time, no mistakes should be tolerated as they may undermine confidence in the 

program. 

The best solution is to determine inspection status only upon arrival of the consignment. Data 

systems that closely mimic the work-flow process would do this automatically. A less than ideal 

solution would be to require importers to submit the required paperwork on the day of 

consignment arrival. However, there may be good reasons (e.g., special targeting operations, 

staff resource planning) to encourage early submission of paperwork.   

System integration. Dynamically determining inspection levels requires integration with the data 

system that processes incoming consignments and collects information about them (hereafter, 

“customs system”). However, it is not necessary for the customs system to have real-time access 

to data on inspection outcomes, nor be integrated with the chosen sampling schemes. For 

example, the customs system could look-up inspection levels in a separate master table created 

using results data. Likewise, once the inspection level for a lot is known, inspectors could use a 

separate tool to determine sample size and selection information. Integration within one 

system—processing customs data and sampling scheme information—would simplify access for 

inspectors, but separate systems may be more technologically feasible, especially when 

beginning an RBS program. 

Electronic information. Trade data is quickly moving to electronic transfer of information about 

goods and consignments. Trade facilitation efforts will streamline the relationship between 

Customs and other authorities to expedite the movement, release, and clearance of goods in 

commerce. An example of this is the single window concept, which allow parties involved in trade 

and transport to provide standardized information and documents at a single entry point to fulfil 

import, export, and transit-related regulatory requirements (Economic Commission For Europe, 

2005). Electronic data should be submitted only once. NPPOs would be well advised to begin 

developing data systems that can provide large amounts of high-quality data about consignments 

moving in trade. See United Nations (2011) or WTO (2014) for more information on trade 

facilitation and the single window. 



Risk Based Sampling 
 

69 | P a g e  

 

5.3.2.4. Alternatives to dynamic information systems 

Agencies that are unable to develop a dynamic information system, can still implement an RBS 

program. This may mean limiting the number of pathways/commodities in the RBS program to a 

number that can be supported with available resources.  

In this scenario, the basic approach would be to collect and analyze inspection results at specified 

intervals (daily, if possible), and then adjust the inspection levels. This approach would mimic 

some of the simple procedures described in Table 8. Many of the tasks could still be automated. 

For example, inspection results could be entered into a spreadsheet template that automatically 

determines new inspection levels and formats the date for use.  

Implementation of the simpler system is at the discretion of the NPPO. If few plant products are 

eligible, import volumes are low, and ports-of-entry are few, then inspectors might get by using 

paper copies of current inspection levels. In most cases, it would be preferable to access/manage 

the information electronically.  

5.4. Case studies to illustrate the RBS program design process 

• Throughout this chapter we will use three case studies to illustrate the RBS program 

design process. The first case study country is Orchard Isles, a small country with a 

moderate amount of plant product imports, but a high level of biosecurity concern. The 

Orchard Isles NPPO (OI-PPO) samples incoming plant products at a high level and is hoping 

that an RBS program might allow them to further reduce pest leakage. 
• The second case study country is Pasturio, a moderate-sized country that imports a 

moderate amount of plant products and relies heavily on exports of animal and dairy 

products. Their regulatory authority (Pasturio-PO) wishes to optimize inspections 

especially on the limited plant products they import.  

• The third case study country is Urbania, a large country with many imports, that wishes 

to improve safeguarding across a wide array of agricultural products. The Urbanian animal 

and plant protection organization, Urbania-APPO, currently samples incoming agricultural 

products at a low rate, and wants to use an RBS program to efficiently increase the 

intensity of inspections.  

5.5. Designing the Risk-Based Sampling (RBS) program  

Perhaps the most challenging task for an NPPO is figuring out exactly what a future RBS program 

will look like. NPPOs may have too many commodities to consider, too many ports-of-entry to 

focus on, and too many technical issues to align. NPPOs may find it much easier to begin by 

focusing on a portion of the possible trade pathways and establish a pilot program. This approach 

will allow NPPOs to develop expertise and experience with RBS designs. As mentioned previously, 
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building an RBS program is divided into three activity areas - design, implementation, and 

maintenance and the process has 13 steps (Figure 18). A 14th and optional step supports major 

program revisions. 

 

Figure 18. Flowchart of the process for designing, implementing, and maintaining an RBS inspection scheme. 

Parentheses list the relevant steps in the text. Dashed lines represent optional paths. 
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5.5.1. Step 1 – Identify pathway(s) 

5.5.1.1. Considerations 

Factors to consider when evaluating trade pathways as possible candidates for an RBS program 

may include: 

• Trade volume. An RBS program will be most beneficial when used for high volume 

commodities, as potential resource savings for inspections is higher. 

• Risk. It might be best to initially focus on commodities known to be lower risk, to limit the 

consequences of start-up difficulties or short-term increases in leakage before the quality 

of the traded commodity improves.  

• Interest from industry. If producers/shippers are interested in the program then 

acceptance of new procedures and motivation to improve the quality of the traded 

commodity will be strong. 

• Resource intensive pathways. NPPOs may find it useful to focus on pathways that require 

most of their inspection resources. 

• Other operational aspects. For example, considering which and how many ports-of-entry 

will be involved; taking into account involvement of other agencies outside of the NPPO, 

or the existence of other ongoing special programs at ports-of-entry. 

5.5.1.2. Describing and tracking eligible commodities 

In addition to selecting the pathway(s), NPPOs must describe the commodities eligible for the 

RBS program to understand how they will be tracked. Commodities could be identified using 

taxonomic placement or a tariff code and should include origin.  

Specifying commodity identity 

• Category/Type. If products have well-defined types, these can be used for tracking. As an 

example, the U.S.  NPPO established an RBS program for propagative plant material using 

10 different commodity types (e.g., seeds, unrooted cuttings, rooted plants).  

• Taxonomic family. Using family may be appropriate for commodities that present similar 

pest risks, such as for flowers (Rosaceae, Liliaceae). 

• Genus. This may be the simplest identity option.  However, using this option might 

aggregate multiple species that may have different pest risks.  

• Species. Perhaps the most obvious identity option for tracking as the pest risk can be tied 

to species. Aggregation may be a problem for specialty crops. 

• Codes. Harmonized Tariff Codes are used to track and identify commodities in trade. 

However, they may not be sufficiently detailed (e.g., fruits and nuts) for an RBS program.  
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The United States uses the harmonized tariff code (Globally Unique Product Identification Code) 

in addition to scientific name to identify commodities. Identification systems that rely on a 

combination of taxonomy and product type may be more common. For example, cut flowers are 

routinely identified by family association (roses, tulips, lilies, etc.), but doing the same for fruits 

and vegetables (e.g., cucurbits, beans, citrus, berries) might obscure differences in pest risk 

across species. 

It might be challenging for data systems to work with scientific names, especially if importers do 

not provide that information in a standardized way. Some NPPOs may also make distinctions 

down to plant variety for certain pest risks, which can complicate tracking. 

In some cases, commodity descriptors may negatively impact RBS programs. For example 

Australia implemented RBS for a dozen or so low risk commodities identified only with tariff 

codes (Brent, 2016). Tariff codes can be quite specific for some items but quite general for others 

(e.g., fruits and nuts).  The Australian NPPO determined that tariff codes presented challenges 

when their RBS program was going to be expanded, so they created a new data system that 

accepted more detailed codes or taxonomic identifiers.  

Specifying commodity origin  

• Country. It is the simplest, but perhaps the least useful commodity origin, because 

commodities of high and low quality may be grouped together. However, for some 

pathways, such as sea containers, using country makes sense. 

• Consignee/Broker/Importer. Receivers of consignments may be entities in the importing 

country or might also operate in the exporting country. Even though these entities are 

less able to affect commodity production and quality, they have interest in having 

reduced inspections. One way for entities to influence the nonconformity rates of 

consignments is to switch from working with low to higher quality commodity producers. 

Entities may import a single commodity from different countries, so origin may still need 

to be tracked. 

• Shipper/Conveyor. These are entities that transport the commodities. They may be based 

offshore or operate in the exporting and importing country. They have little control over 

commodity production or quality but may still be interested in having reduced 

inspections. If shippers are active in multiple countries, then origin may still need to be 

tracked. 

• Processor/Exporter. These are typically local entities, making them well suited for 

aggregation in order to gain program eligibility and also for influencing commodity 

production and quality. Note that information on processors/exporters may not be 

available for RBS program management. 
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• Producer/Farm. This information rarely is available for RBS program management. It is 

ideal to have in order to provide feedback on commodity non-conformities but may result 

in too many combinations that cannot qualify for reduced inspection because of their low 

volumes. Unless producers are directly involved in the export process, they may have little 

interest in qualifying for reduced inspections.  

5.5.1.3. Case study updates 

• Orchard Isles. The OI-PPO wishes to bring all plant products into one or more RBS 

programs, perhaps with different sampling schemes for different product types. They plan 

to begin regulating these items at the level of (country of) origin and genus, but hopefully 

move to a more detailed level (than origin), such as shipper or consignee in due course. 

• Pasturio. The Pasturio-PO is focused on inspecting plant products, to provide biosecurity 

for its own production for domestic use and for exports.  

• Urbania. The Urbania-APPO is tasked with safeguarding a great number of pathways – far 

too many to implement an RBS program all at once.  As such, they have chosen to begin 

with cut flowers and all kinds of fruits and vegetables (fresh, frozen, and processed).  

5.5.2. Step 2 – Choose a general inspection scheme 

In this step, a decision is made in terms of what incentives to offer as part of the RBS program 

design. Reduced inspection is the typical incentive, but this can be done in one of two ways: 

reduced intensity or reduced frequency of sampling.  

5.5.2.1. Reduced intensity 

Reduced intensity means taking smaller sample sizes. It is the most conservative choice for an 

RBS program design because every incoming lot is still inspected (that is, f stays constant at 100 

percent). In certain circumstances, this can result in a faster detection of a change in plant 

product quality. 

Time savings result from inspecting fewer units in lots that are subject to reduced inspection, and 

fewer total units inspected in a series of lots. For example, in a normal inspection with n = 48 (N 

= 1,000), if the product is boxes of fruit with 10 pieces per box, then 48 boxes (480 fruit) need 

inspection. In a reduced inspection under MIL-STD-1916, with n = 20, only 20 boxes (200 fruit) 

need inspection, a reduction in effort of 280 fruit inspections (58.3 percent). Hence, if inspecting 

480 fruit takes one hour, it might only take, 25 minutes to inspect 200 fruits, a savings of 35 

minutes. However, each box still has to be 1) held and brought to the inspection area, 2) 

disassembled for sample selection, 3) inspected, 4) reassembled, and 5) cleared, so time savings 

may be limited to 35 minutes. Consequently, reduced intensity schemes will usually result in less 
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time savings than the reduced frequency of sampling approach (see below). This may make it a 

somewhat less desirable RBS scheme to trading partners. 

Another challenge with reduced intensity schemes is their effect on inspection data. Reducing 

intensity of sampling alters the sampling parameters: if using hypergeometric function 

parameters, then C or p, or both change; when using the OC curve approach, then AOQ or AOQL 

change. This means that sampling will be variable over time, and the corresponding data will not 

have the same sample design, which should be taken into account during data analysis. 

Furthermore, reducing sampling intensity can lead to very low likelihoods of detecting a 

nonconformity in a single lot. For example, if only one unit in 1,000 is nonconforming, then n = 

48 (see above) results in about a five percent chance of detection (1 - (1 - 0.001)48 = 0.047). At 

some point, taking such few samples for relatively large lots will not be worthwhile because 

detection probabilities are very small.  

5.5.2.2. Reduced frequency 

In a reduced frequency of sampling scheme, such as the skip-lot standard introduced above, 

inspection frequency, f, starts at 100 percent but decreases under reduced inspection. Sampling 

parameters remain unchanged, which is advantageous because sampling is consistent (i.e., 

constant C and p, or specified values of AOQ/AOQL), unlike in reduced intensity inspection 

schemes. 

A benefit of reduced frequency schemes is time savings. In this type of scheme inspectors can 

skip at least four steps (see Table 9): disassembly (step 2), sample selection (3), inspection (4), 

and reassembly (5). The amount of time saved can be significant - more than twice the time 

savings than in a reduced intensity scheme. 

Skip-lot sampling is appropriate when producers/shippers have documented their quality 

systems and can be trusted (e.g., ANSI/ASQ, 1996), that is, when there is external and verifiable 

evidence of quality in addition to inspection history.  This may not be the case for some pathways, 

but production practices for a given commodity are generally consistent for similar production 

locations and growers, and phytosanitary certificates and other documentation that accompany 

consignments may report processes that maintain product quality standards. However, 

documentation may not be uniformly reliable. Some NPPOs may have data that indicate that pest 

action rates are sufficiently low in particular pathways that would favor the implementation of 

skip-lot sampling. Alternatively, NPPOs could use tables that specify the number of lots to inspect 

(different from i, the clearance interval) before entering a qualification phase for reduced 

inspection (Table I in ANSI/ASQ, 1996). 
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Table 9. Comparison of general steps and time taken for each under normal and reduced sampling schemes, 

comparing overall time savings. Times are estimates for the purpose of this example but note that times are the same 

for both normal schemes. Values in bold differ between normal/reduced. 

Inspection step Reduced Intensity Reduced Frequency 

 Normal  Reduced Normal Reduced 

 Time taken (min) 

1. Hold consignment and inspect documents 15 15 15 15 

2. Dock and unload consignment 15 15 15 0 

3. Disassemble and select samples 15 10 15 0 

4. Inspect samples 60 25 60 0 

5. Reassemble and reload  15 15 15 0 

6. Clear  15 15 15 15 

Total time taken 135 95 135 30 

Savings under reduced inspection           40            105 
 

Another scenario to consider is a skip-lot scheme based on CSP-3 (a type of continuous sampling), 

as described and tested by Robinson et al. (2012a) (for CSP-3 also see section 4.5). In this 

approach, a single non-compliance does not trigger an immediate return to normal inspection 

levels, but instead mandates tightened short-term inspections, for the next, say, four consecutive 

lots.  Jones et al. (2017) refer to this as the alert phase. Only if a second non-compliance is found 

during the alert phase does inspection revert to normal levels. The number inspections after a 

non-compliance becomes an additional parameter to specify for the reduced frequency scheme; 

commonly four are recommended.  This approach is likely to minimize inspections compared to 

a stricter rule switching approach.  The approach may be useful for pathways in which producers 

and importers have occasional non-compliances as opposed to sustained increases in the non-

compliance rate. 

5.5.2.3. Comparison of plan types    

A question that NPPOs might want to consider when comparing reduced intensity versus reduced 

frequency approaches is - which approach detects problems faster? The answer relies on the 

exact circumstances of the situation. For example, if the target problem is a ten-fold or more 

increase in the number of infested units contained in an average lot, then skipping some lots 

before inspection could result in considerable pest leakage; even at a reduced intensity, the 

problem might be detected early. On the other hand, if the target problem is less significant, for 

example a doubling in infestation rates to only 2 percent, then the chance of detecting this 

change at a reduced intensity is likely to be small (or at least smaller than with normal sampling 

schemes). In the latter case, we would be more likely to detect the problem at the greater 

sampling intensity in a reduced frequency approach, even if we skipped some lots before 
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detecting the positive.  It is difficult to favor one approach over the other in this regard. Intuition 

might suggest that inspecting every lot is an advantage, but it depends on the circumstances of 

an NPPO.  In any case, NPPOs may become more comfortable about the performance of either 

scheme by conducting a simulation experiment, ideally using existing inspection data (see 

Robinson et al., 2012a). 

Neither approach is simpler to operationalize than the other. For example, in a reduced intensity 

scheme we know that every incoming lot will be inspected, but the plan to determine the sample 

size may vary.  In a reduced frequency scheme, randomly determining whether or not to inspect 

skipped lots is an extra step in the process, but the reference sampling plan never changes. Each 

scheme has its benefits and challenges. 

Generally, resource savings or optimization should be greatest with reduced frequency RBS 

programs (skip-lot sampling), and this is an important factor to consider. If a reduced frequency 

program is a good fit for an NPPO to implement, it should be done. Greater computational or 

data system needs can be justified with the expected gains in efficiency. Industry partners seem 

to prefer them over reduced intensity schemes, primarily because of time savings, but these 

schemes also reduce handling time and possible harm (or complete loss) during inspection. 

5.5.2.4. Case study choices 

• The Orchard Isles NPPO (OI-PPO) chose skip-lot sampling to maintain high inspection 

efforts while reducing overall pest leakage. 

• Pasturio chose MIL-STD-1916 as their standard inspection scheme for incoming plant 

products, because they believe stakeholders would not favor skipping lots. 

• Urbania is interested in using either inspection scheme - whichever performs best.  

5.5.3. Step 3 – Specify inspection scheme details 

Specifying the parameters for a sampling scheme will likely be an iterative exercise and will be 

refined when the impact of these choices on inspection operations and effort (Step 4) are 

evaluated. A few different schemes might be assessed before settling on the final specification.  

We recommend selecting a standard sampling plan, but NPPOs may also design non-standard 

plans, or adapt standard plans to their specific needs. The latter could be done by adding or 

deleting reduction levels or altering parameter values. For example, with ISO 2859-3, an NPPO 

could alter the four specified f values, or add a fifth reduction level, or invoke only one, two or 

three reduction levels. Likewise, MIL-STD-1916 only specifies reducing inspection by one level, 

but an NPPO might justify adopting a plan with two or more reduction levels (note that it is not 

possible to go below verification level R). Below we describe how to design non-standard plans 
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but more details can be found in these references (Chapter 4 in Stephens, 2001, or Chapter 19 in 

Schilling and Neubauer, 2017). 

When designing the inspection scheme, NPPOs might consider behavioral aspects of program 

choices (see Rossiter and Hester, 2017; Starbird, 2000; Wan et al., 2013). Stakeholders may 

respond differently to incentives for increased compliance (quality), depending on the pathway 

and their flexibility, and some schemes or combinations of parameters may increase their 

willingness to comply. Not much research has been done on acceptance sampling plans from a 

regulatory standpoint, and little data exists on how program choices generally affect 

nonconformity rates for the pathway over time. Surveying stakeholders may serve to gain insight 

into how to incentivize compliance (see, for example, Rossiter and Hester, 2017). 

Keep in mind that any inspection scheme to be implemented by an NPPO needs to be easy to 

explain, not only for those responsible for implementing it (the inspectors) but also for the 

stakeholders that will benefit from its uptake. 

   “If you want a method or system used, keep it simple.” (Dodge, 1977) 

5.5.3.1. Inspection reduction levels (incentives) 

The first step is to determine how many different levels of reduction (or tightening) to use in the 

program. This is the same as determining how many levels of incentives (or disincentives) will be 

offered to importers and shippers. Having fewer levels is preferable, both for communication to 

importers and for ease of data system programming. 

For example, the ISO standard 2859-3 specifies four levels of skipping inspection (ISO, 2005) while 

the standard MIL-STD-1916, allows for only one level of reduced inspection below the prescribed 

level (Department of Defense, 1996); the reduced sample size is about 60 percent less, regardless 

of the default verification level. Other plans will require further specification. For example, the 

SkSP-2 inspection scheme has no specified levels - users themselves define the number of 

reduced inspection levels and associated parameters. 

5.5.3.2. Sampling scheme parameters 

A. Reduced intensity schemes 

Standard plan. If using MIL-STD-1916, or a similar reduced intensity scheme (se Z1.4; ANSI/ASQ, 

1993), then i = 10, and the only choice remaining is the normal (baseline) verification level (VII-I). 

That information determines the reference sampling plan for the inspection scheme. The choice 

is based upon the desired quality level, most likely using AOQ or AOQL values. The curves can be 

viewed (by verification level) in the Appendix of the Handbook for MIL-STD-1916 (Department of 
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Defense, 1999); below we show one example for verification level III, with AOQL values over five 

lot size codes - from about 0.45 percent to 1.1 percent (Figure 19).  

 

 

Figure 19. AOQ (percent) curves by lot size (A-E) versus percent nonconforming lots for the MIL-STD-1916 plan at 

verification level III. Values for AOQL can be read from the maximum value of each curve or can be calculated directly 

(see Appendix A). Figure attribution Department of Defense, 1999. 

In hypergeometric terms, if one specifies C = 0.95 and works backward from the given sample 

sizes, then verification level III equates to p = 0.089 at lot size A and to p = 0.037 at lot size E (see 

Table 4). For comparison, the sample sizes given by verification level II are p = 0.22 at lot size A, 

to p = 0.089 at lot size E.  

The MIL-STD-1916 handbook recommends the use of verification level VII for risks deemed 

critical, whereas levels III to VI are recommended for major risks. Minor risks can be managed 

using verification levels I to III. 

Non-standard plan. If an NPPO decides to add one or more reduced inspection levels to a 

standard plan, they should specify the normal verification level (reference sampling plan) and 

confirm that a constant i is being used for all switching rules. If varying values for i for different 

reduction levels are chosen, then those need to be justified. For example, an NPPO might use 

MIL-STD-1916 and specify a normal verification level of IV, with i1 = 15 for switching to level III, 

but also specify i2 = 20 for a further reduction to level II. The justification might be that they wish 

to ensure greater quality before effecting the second switch. 

If the reduced intensity scheme is being built de novo, then the NPPO needs to specify: 



Risk Based Sampling 
 

79 | P a g e  

 

• i, which will either be constant across all reduction levels (recommended) or specified 

uniquely and justified for each level; and 

• when using C and p (hypergeometric functions): 

o Specify C and p for the normal inspection level 

o Specify C and p values for each reduction level 

• when using AOQL/AOQ (OC curve approach): 

o Specify desired value of AOQL (or alternatively, the mean AOQ) for the normal 

inspection level13 

o Specify desired values of AOQL (or mean AOQ) for each reduction level. 

Note that whichever approach is used, the parameter values for the normal inspection level 

define the reference sampling plan for the inspection scheme.  

B. Reduced frequency schemes  

Standard plan. The first step in specifying any skip-lot plan is to define the reference sampling 

plan. This can be done using either the OC curve or the hypergeometric approach. A standard 

plan will often include set values for i and f. The value of i may be constant, but there are usually 

multiple f values that specify the steps for skipping inspection levels. For example, if using ISO 

2859-3, the parameters are set at i = 10, and f = 0.5, 0.4, 0.3, and 0.2. If using SkSP-2 or another 

skip-lot scheme with no proscribed parameters, NPPOs should follow the guidance for non-

standard plans. 

Non-standard plan. Here as well, the first step is to define the reference sampling plan using the 

OC curve or hypergeometric approach (or both). The next step is to evaluate how different i and 

f combinations affect the detection level of the reference plan and find one that meets NPPO 

expectations for time to qualification (i) and fraction inspected (f) and gives the desired AOQL (or 

mean AOQ).14  

Note that lower values of i can be compensated for by greater f values and vice versa, so there 

are many combinations that could meet the desired specifications of the NPPO. The 

consideration for choosing the value of i is how long the NPPO can wait until some products begin 

qualifying for skipping inspection, versus how much assurance they want to provide to 

stakeholders that quality is sufficiently high to allow skipping inspection. Similarly, some 

considerations for choosing f are how much the NPPO needs to reduce the overall inspection 

effort (resource savings) versus how comfortable they are with allowing many lots to be accepted 

before a significant change in quality is detected.  

 
13 Stephens (2001) provides an equation for calculating n based on AOQL. See Appendix A. 
14 Or relate to the parameters C and r if preferred. 
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Quantifying the effects of different values of i and f on the nonconformity rates achieved in 

conjunction with the reference sampling plan is not a trivial task, especially for AOQ because it 

varies with both p and n. The acceptance sampling reference books by Stephens (2001) and 

Schilling and Neubauer (2017) provide spreadsheets useful for this purpose. Reference tables for 

AOQL2 are also available in Perry (1973) [the relevant table is reproduced in both reference texts]. 

Such tables are limited to the listed i and f values. Simulation exercises based on historical data 

or models can also be used based on the expected or observed patterns of pathway 

contamination (Robinson et al., 2012a). 

Note that skip-lot sampling decreases the quality level provided by a reference sampling plan, 

because some nonconforming lots are being accepted without inspection. However, the savings 

in inspection effort and resources can be redirected to manage other risks. 

5.5.3.3. Sample size determination by inspectors 

Regardless of which inspection scheme is used, NPPOs must specify how sample sizes will be 

determined by officers/personnel carrying out inspections. Options include using tables (existing 

or newly developed), manual calculations, or using a special calculator tool or spreadsheet (see 

Appendix for functions). These can be made available in print or in digital or online formats to 

inspectors. 

For example, when using MIL-STD-1916 without modification, providing paper copies of Tables I 

(lot size codes) and II (sample sizes by code and verification level) may be enough for inspectors 

to determine the sample size. For other schemes, tables to determine sample size may have to 

be developed by the NPPO specifically for their chosen inspection scheme.  

For reduced frequency plans, the reference sampling plan will rarely change. It can be provided 

in the format best suited for the operational situation (as above). However, the NPPO may need 

to provide a tool to randomly determine whether to inspect a lot that is in the skipping phase. 

See Annex B in ISO (2005) for suggestions on how to do this using random number tables or dice. 

5.5.3.4. Case study choices 

Orchard Isles. OI-PPO decided to use skip-lot sampling. The reference sampling plan was set to 

achieve very high-quality, based on an AOQL of about 0.00045, which equates to CRef = 0.95 and 

pRef = 0.005. Under this plan, a lot size of 1,000 would have a hypergeometric sample size of 450. 

OI-PPO decided to adopt ISO 2859-3 for most product pathways. As such, the parameters used 

were as listed in the standard plan (see 5.2.2.2). The estimated quality levels achieved with this 

plan are AOQL1 = 0.00082 (regardless of f), while AOQL2 varies from 0.00262 at f = 0.5 to 0.00661 

at f = 0.2. Note that levels are very low because of the high intensity of the reference sampling 

plan. 
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For low-risk pathways, such as that for processed products (e.g., dried fruit) or items for 

processing (e.g., coffee beans), OI-PPO used SkSP-2.  Because the pathways were low-risk, OI-

PPO felt comfortable specifying f values that stepped down from 0.1 (1-in-10), to 0.05 (1-in-20), 

and finally as low as 0.02 (1-in-50), always with i = 10.  The value for AOQL1 was unchanged from 

above, but AOQL2 increased to 0.0995 at f = 0.1, and up to 0.184 at f = 0.02.  

Pasturio. Pasturio PO decided to use MIL-STD-1916 with verification level IV for their normal 

sampling plan and two levels of reduced inspection after i = 12. The mean sample size for level 

IV is 131 (range = 80 to 192) (Department of Defense, 1996), corresponding to a value for pRef of 

about 0.021 when CRef = 0.95 (N = 1,000), AOQL1 = 0.00049, and AOQL2 = 0.0024. 

Urbania. For most pathways Urbania inspects at low intensity. They wanted to at least double 

the intensity on most pathways, with inspections capped at the current level of effort. Their 

current sampling is set at pRef = 0.15 and CRef = 0.95, which gives n = 19 for N = 1,000, and equates 

to AOQL1 = 0.0150 and AOQL2 = 0.0190. To double the sample size to 38, one can decrease pRef 

to 0.075, which equates to AOQL1 = 0.0057 and AOQL2 = 0.0093. 

Urbania decided to compare MIL-STD-1916 against the SkSP-2 plan for cut flowers. For MIL-STD-

1916 they used verification level II as normal, because the mean n at that level was about 21 and 

the mean AOQL about 0.034, over all lot sizes (after Schilling and Neubauer, 2017). For SkSP-2, 

they chose f = 0.6, to align with the 40 percent reduction in sample size and used n = 21 instead 

of the baseline value of 19.  

Based on these results (see below), they specified two different SkSP-2 plans for fruits and 

vegetables, one for fresh produce, and one for frozen/processed items. The plan for 

frozen/processed items had i = 10, with f values of 0.5, 0.3, 0.1, and 0.05. This results in quality 

levels of AOQL1 = 0.0189 (all f), and AOQL2 = 0.0262 (0.5), 0.0477 (0.3), 0.0995 (0.1), and 0.135 

(0.05). Because of the low risk associated with frozen/processed items, they opted not to 

increase sampling intensity for this pathway. The fresh produce plan was similar ( f values of 0.5, 

0.25, and 0.125) and was subjected to increased sampling intensity. 

5.5.4. Step 4 – Evaluate the chosen inspection scheme 

Evaluating the impacts of the inspection scheme and its specifications on the overall process is 

important. Evaluation should include the level of effort required, its effect on the number of non-

conforming lots detected, and the corresponding leakage/slippage. Pre-implementation 

evaluation is an excellent way to assess some expected outcomes and ensure that the goals of 

the program are met.  

It might be reasonable to evaluate more than one inspection scheme (Step 3, above) on its 

processes, operations, and outcomes. The process of finding a scheme that meets the desired 



Risk Based Sampling 
 

82 | P a g e  

 

outcomes for an NPPO could be iterative. Each NPPO should determine what values must be met 

for the inspection scheme to be considered acceptable. In general, effort levels should meet or 

exceed expectations and efficiently use resources (time taken for inspections) while minimizing 

leakage rates. 

5.5.4.1. Calculate performance indicators 

Below we present ways of estimating total inspections and samples taken, time required, and 

leakage for the two different types of inspection schemes. Other metrics may be of interest and 

could be developed by NPPOs themselves. Arthur et al. (2013) has additional suggestions. 

A. Reduced intensity schemes 

Inspected samples. The most direct method to evaluate how the inspection scheme affects the 

effort (or resources) required is to estimate the total number of samples taken during normal 

and reduced (and tightened, if appropriate) inspections (Appendix D1) and compare these data 

to the number of samples taken when using a non-RBS approach.  

Instead of using the mean L over all lots, they could be separated into cohorts of similar size, such 

as lots with mean sizes of 500-1,000, 1,000-2,000, etc., or different levels of p or d. After 

calculating the results for each cohort, sum the results to find totals. This is more complicated 

but may improve the estimates. 

Time taken for inspections. Here we estimate and compare how long (person-hours) it takes to 

perform inspections under RBS and non-RBS approaches. Consider how long each step in the 

entire process (arrival to clearance) takes per consignment, and then determine the total time 

over all consignments under RBS and non-RBS approaches (Appendix D2). A next step might be 

to calculate how many persons would be needed to achieve these totals under a normal work 

schedule. 

Leakage. The objective is to compare the number of defective (infested) units that escape 

detection under RBS and non-RBS approaches.15 The value will usually be greater under RBS 

because fewer total lots, or fewer total samples, are being inspected. If, however, the RBS 

program being evaluated increases n for higher risk items, perhaps capping the overall inspection 

effort, then leakage might be similar or perhaps decrease under RBS and non-RBS approaches. 

The approach to evaluate leakage is to estimate the total number of non-conforming (infested) 

lots that are accepted and use those values to estimate the number of defective (infested) units 

accepted under each scenario (Appendix D3).  

 
15 This concept is different than the idea of a ‘leakage survey,’ which means post-inspection checks to determine the effectiveness 
of just-completed inspections (see Robinson et al., 2012b).  
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In this approach we have estimated the number of defective items, or those infested by pests, 

rather than the number of pests or propagules themselves. Pest propagule pressure is, however, 

the most important biosecurity risk metric (Blackburn et al., 2011; Williamson and Fitter, 1996). 

One could estimate pest propagule pressure from the mean number of propagules per infested 

item, if known. However, this number varies by pest type, by commodity type, just to name a few 

important factors. As such, estimating the number of pests or propagules accepted is more 

difficult and uncertain than estimating the number of defective items accepted.  

B. Reduced frequency schemes.  

For many skip-lot sampling schemes, possible status will be either normal or reduced inspection, 

so the methodology should determine the proportion of lots under each status. When using a 

skip-lot scheme based on CSP-3 (see Robinson et al., 2012a) (for CSP-3 also see section 4.5), the 

proportion of time spent in the alert phase, with normal inspections, also needs to be estimated. 

Inspected samples. The method differs from the approach described above in that sample sizes 

do not change, but we must account for the fraction of lots that are not being inspected 

(Appendix E1).  

Time taken for inspections. The method is like the one described above, but the potential time 

savings is greater because when lots are cleared without inspection some steps are skipped 

altogether (Table 9) (Appendix E2). 

Leakage. As above, we need to estimate the number of non-conforming lots that are accepted 

under RBS and non-RBS approaches, and then estimate and compare the number of defective 

units in those lots (Appendix E3).  

5.5.4.2. Specialized analyses 

Person-hours/Staff required. If a direct assessment of resources in person-hours is needed, then 

metrics should be converted to time-based units.  For example, the number of samples taken can 

be converted to person-hours using an estimate of mean time taken to inspect each sample.  The 

time required for the entire inspection process can be estimated by adding the time required for 

activities other than sampling (e.g., off-loading the material, selecting the samples).  

Using saved resources for more intensive inspections. Reinvestment of saved resources to 

increase inspection intensity is also possible. The approach is to estimate the number of 

inspections (or time required) under the current (non-RBS) system, then apply the RBS approach 

to estimate the savings gained, and then increase sample sizes (or frequencies) until the current 

effort levels are approximately matched. Such reinvestment is not always done. 

Simulation-based approaches. Simulations are more resource-intensive but may provide more 

realistic estimates than the approaches used above (see Springborn et al., 2018). This is because 
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simulation-based analyses can explicitly account for uncertainties. Also, because inspection 

outcomes are inherently probabilistic, a simulation approach suits the process very well.  

5.5.4.3. Case study examples 

Orchard Isles. OI-PPO chose to use skip-lot sampling on all pathways. 

Very low-risk pathways. OI-PPO identified 25 commodities typically arriving in lots of about 

5,000 units. The reference sampling plan for this lot size gives n = 564. They estimated they could 

expect 50,000 lots annually (2,000 per commodity on average), and estimated p = 0.1 (non-

conforming fraction) and d = 0.0002 (fraction defective) (Table 10, below). 

Almost 750,000 samples were taken annually under the RBS approach (Table 11, below). This is 

a 97 percent reduction when compared to the non-RBS approach, while leakage only increased 

by an estimated 54 units. Also, the time required for all operations under RBS was just over 

26,000 person-hours, compared to 65,000 person-hours under the non-RBS approach, a decrease 

of 60 percent. 

Other pathways. OI-PPO used the ISO 2859-3 plan by dividing the pathways into groups with 

similar lot sizes. Fresh produce (75 commodities) had L = 1,000 per commodity, mean N = 1,500, 

and mean d = 0.001 (Table 10). Cut flowers and some other products (60 total) had N = 5,000 and 

total L = 2400. Propagative material (25 total) had N = 10,000, with total L = 1,200. 

For fresh produce, about 30M samples were taken under RBS, compared with about 37M under 

the non-RBS approach, a savings of 19 percent (Table 11). The time taken for inspections dropped 

by 15 percent under the RBS approach. Leakage increased under RBS by 1,194 units, or a 

proportional increase of 3 over the total without RBS. That meant that almost 5,900 samples 

were saved per unit increase in leakage. The relatively low savings from RBS in this category 

reflects that relatively large n in combination with relatively small N (which lowers Pa) tends to 

limit the potential of commodities to get to lower f levels. 

For cut flowers and other products the total number of samples taken under RBS was just over 

500K, compared to over 1.35M samples without RBS, a savings of about 47 percent (Table 12). 

The time required for inspections without RBS was 4,800 hours but dropped by 47 percent to 

2,534 with RBS. Leakage increased by only 7 units, or 1.5 percent, which saved more than 121K 

samples per unit increase in leakage. 

Lastly, for propagative material total samples taken under RBS were about 255K, compared to 

almost 700K without RBS, a decrease of 63 percent (Table 12). Person-hours dropped from 2,400 

to about 1,250 under RBS, a 48 percent decrease. Leakage was estimated to be zero, reflecting 

both the low volume and the low non-conformity rate on the pathway. 
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Combining the results from all pathways, the Orchard Isles PPO took 35.7M fewer samples to 

clear all the lots, a savings of 53 percent. This saved over 67,000 total person hours, at an increase 

in leakage of only 1,255 units, or over 28,500 samples saved per unit increase in leakage. 
 

Table 10. Parameter values for evaluating the proposed inspection scheme designs for pathways in Orchard Isles, by 

product type: processed items and items destined for processing, fresh produce, cut flowers, and propagative 

materials (PM). For all pathways, AOQL was about 0.00045, which equates to CRef = 0.95 and pRef = 0.005. 

Parameter Description Values 

  Processed Fresh Cut flowers PM 

L Mean annual arriving lots (no.) 50,000 75,000 2,400 1,200 

N Mean lot size (no.) 5,000 1,500 5,000 10,000 

p Fraction of non-conforming lots 0.1 0.2 0.2 0.1 

nNorm Sample size, normal inspections (no.) 564 493 564 581 

d Mean fraction of defective units per lot 0.0002 0.002 0.0002 0.0001 

D Mean defective units per lot (no.) 1 3 1 1 

Pa Mean Pa, adjusted for p 0.989 0.861 0.977 0.994 

Pr Mean Pr, adjusted for p 0.011 0.140 0.023 0.006 

hinsp Person-hours per inspected lot 1.3 2.25 2.0 2.0 

hnon Person-hours per non-inspected lot 0.5 0.5 0.5 0.5 

i Clearance numbera 10 10 10 10 

a For the number and values of f, see 5.5.3.4. 

Table 11. Estimated metrics for proposed inspection scheme designs for processed/processing items, or cut flowers 

in Orchard Isles, with and without RBS. Reported values are estimated mean annual responses. 

Description Values 

 Processed Fresh produce 

 No RBS RBS No RBS RBS 

Comparative estimates     

Total samples taken for all lots (no.) 28,200,000 749,556 36,975,000 29,932,495 

Total time taken for inspections (person hours) 65,000 26,063 168,750 143,751 

Total accepted non-conforming lots (no.) 4,944 4,998 12,907 13,305 

Total defective units accepted (no.) 4,944 4,998 38,721 39,915 

Summary of RBS effects     

Total samples saved using RBS (no.) 27,450,444 7,042,505 

Proportional savings in samples inspected 0.97 0.19 

Total time saved using RBS (person-hours) 38,937 24,999 

Proportional time savings for inspections 0.40 0.15 

Leakage (increase in defective units, no.) 54 1,194 

Proportional increase in leakage of units 0.01 0.03 

Samples saved per unit increase in leakage 508,342 5,898 
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Table 12. Estimated metrics for proposed inspection schemes for cut flowers and propagative material in Orchard 

Isles, with and without RBS. Reported values are estimated mean annual responses. 

Description Values 

 Cut flowers Propagative material 

 No RBS RBS No RBS RBS 

Comparative estimates     

Total samples taken for all lots (no.) 1,353,600 501,396 697,200 255,059 

Total time taken for inspections (person-hours) 4,800 2,534 2,400 1,259 

Total accepted non-conforming lots (no.) 469 476 119 119 

Total defective units accepted (no.) 469 476 119 119 

Summary of RBS effects     

Total samples saved using RBS (no.) 852,204 442,141 

Proportional savings in samples inspected 0.63 0.63 

Total time saved using RBS (person-hours) 2,267 1,142 

Proportional time savings for inspections 0.47 0.48 

Leakage (increase in defective units, no.) 7 0 

Proportional increase in leakage of units 0.015 0.0 

Samples saved per unit increase in leakage 121,743 N/A 
 

Pasturio. The Pasturio PPO assumed that every lot was nonconforming (p = 1.0), and that d = 

0.0015. Mean N was 2,000, and on an annual basis they expected to receive about 7,500 lots 

(about 20 per day, on average) (Table 13). Without RBS, they expected to take 960,000 samples 

(= 7,500 × 128) to clear all incoming lots. The results indicate that by adopting the proposed RBS 

program the number of samples taken would decrease by 13.5 percent (Table 14). Leakage only 

increased by 528 units, or 2.9 percent over normal expectations (Table 15). This represents a 

savings of about 245 samples per unit increase in leakage, which was judged as acceptable. 

Pasturio decided to implement the proposed RBS program. 

Table 13. Parameter values for evaluating proposed inspection scheme designs for pathways in Pasturio.  

Parameter Description Value 

L Mean annual arriving lots (no.) 7,500 

N Mean lot size (no.) 2,000 

d Mean fraction of defective units per lot 0.0015 

nNorm Sample size, qualifying inspections (no.) 128a 

nRed Sample size, reduced inspections (no.) 48b 

Pa-Q Mean Pa for qualifying inspections (proportion) 0.82 

Pa-Red Mean Pa for reduced inspections (proportion) 0.93 

p Fraction of non-conforming lots 1.0 

D Mean defective units per lot (no.) 3 

i Clearance number 12 

hinsp Person hours per inspected lot 1.3 

hnon Person hours per non-inspected lot 0.5 
a MIL-STD-1916, VL = IV 
b MIL-STD-1916, VL = III 
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Table 14. Evaluation of inspection effort, or number of samples taken, for Pasturio pathways. 

Parameter Description Values 

FRed Fraction of lots under reduced inspections 0.215 

LRed Lots in qualifying inspections (no.) 1,615 

LQ Lots in qualifying inspections (no.) 5,885 

MQ Total samples in qualifying inspections (no.) 753,280 

MRed Total samples in reduced inspections (no.) 77,520 

Mtot Total samples in all RBS inspections (no.) 830,800 

MSaved Total samples saved by using RBS (no.) 129,200 

 Proportional savings in effort 0.135 

 

Table 15. Evaluation of leakage with RBS, or potential increase in defective units accepted in the Pasturio case study 

pathway. 

Description Values 

Mean accepted non-conforming lots, qualifying (no.)  4,825 

Mean accepted non-conforming lots, reduced (no.) 1,501 

Mean accepted lots, total (no.) 6,326 

Total defective units accepted (no.) 18,978 

Leakage (increase in defective units, no.) 528 

Proportional increase 0.029 
 

Urbania. Urbania PPO inspects at low intensity and wants to at least double sampling intensity 

in most pathways, but cap inspections at current effort levels. Consequently, the approach used 

two steps: 1) test for RBS with the baseline sampling level, and 2) then test for RBS with double 

sampling level, to verify that total inspections did not exceed levels under the non-RBS approach. 

Cut flowers. The PPO compared MIL-STD-1916 with a skip-lot sampling plan. They estimated that 

mean N for cut flowers was 6,000, which gives mean n = 32 for the MIL-STD-1916 plan, and n = 

38, for the skip-lot plan using hypergeometric sampling. They expect about 25,000 lots annually. 

In addition, a mean of 20 percent of lots were non-conforming (p = 0.2), d = 0.0005, and 

inspection time per sample was 0.5 min. 

The strictest verification level that could be used without significantly exceeding the cap on 

samples inspected (i.e., no more than 5 percent) was VL III. At that intensity, the estimate for 

total samples taken was over 840,000 (Table 16). At that sampling level under a non-RBS 

approach, 2M samples would have to be taken to clear all lots, indicating significant savings under 

the RBS approach. Moreover, because of the increase in intensity, leakage increased by less than 

1 percent in either scheme (Table 17). The sample savings per unit increase in leakage was over 

386,000. For a relatively clean pathway such as this, using RBS helps maximize sampling intensity 

and improve safeguarding. A comparison of results for MIL-STD-1916 and SkSP-2 plans resulted 
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in the Urbania PPO deciding that the sampling and time savings from SkSP-2 more than made up 

for the increased leakage. 

Table 16. Evaluation of inspection effort, or number of samples taken, for the Urbania cut flower pathway comparing 

MIL-STD-1916 and SkSP-2. 

Parameter Description Values 

  MIL-STD-1916 SkSP-2 

nNorm Mean sample size, qualifying inspections (no.) 80a 38 

nRed Mean sample size, reduced inspections (no.) 32b 38 

p Fraction of nonconforming lots 0.2 0.2 

Pa-Q Mean Pa for qualifying inspections (proportion)c 0.992 0.996 

Pa-Red Mean Pa for reduced inspections (proportion) 0.997 0.996 

D Mean defectives per lot (no.) 3 3 

FRed Fraction of lots under reduced inspection 0.966 0.965 

LQ Lots under qualifying inspection (no.) 847 1001 

LRed Lots under reduced inspection (no.) 24,153 24,115 

MQ Total samples taken in qualifying inspections (no.) 67,760 38,038 

MRed Total samples taken in reduced inspections (no.) 772,896 38,038 

Mtot Total samples in all RBS inspections (no.) 840,656 76,076 

Mtot,NoRBS Total samples taken without RBS (no.) 2,000,000 950,000 

MSaved Total samples saved by using RBS (no.) 1,159,344 873,924 

 Proportional savings in samples taken 0.58 0.92 
a MIL-STD-1916, VL = III 
b MIL-STD-1916, VL = II 
c Pa values have been adjusted for p 

Table 17. Evaluation of leakage and time taken, comparing programs that reduce inspections by decreasing sample 

size (MIL-STD-1916) or by decreasing frequency of inspections (SkSP-2) for the Urbania cut flower pathway. 

Description Values 

 MIL-STD-1916 SkSP-2 

Mean accepted non-conforming lots, qualifying (no.)  168 199 

Mean accepted non-conforming lots, reduced (no.)c 4,815 4,822 

Mean accepted nonconforming lots, total (no.) 4,983 5,021 

Total defective units accepted (no.) 14,949 15,063 

Leakage (increase in defective units, no.)d 66 120 

Proportional increase 0.004 0.008 

Time taken for qualifying inspections (person-hours) 1,626 1,301 

Time taken for reduced inspections (person-hours) 29,467 12,858 

Total time taken with RBS (person-hours) 31,093 14,160 

Proportional decrease from maximum time without RBS 0.352 0.71 
 

Fruits and vegetables. The results of evaluating SkSP-2 for fresh fruits and vegetables are shown 

in Tables 18 and 19. Because the scheme for frozen and processed items was qualitatively very 

similar, we do not present those results. The results demonstrate what can be accomplished if 

savings from reduction in inspections achieved through an RBS approach are used to intensify 
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sampling on the pathway rather than just reducing effort. If sampling occurs at the normal level, 

the total samples taken could decrease by about 86 percent (Table 18), while the time required 

would decrease by two-thirds (Table 19). Instead, sample size is doubled (Table 18), which means 

fewer lots qualify for reduced inspection, but the total number of samples taken is still 50 percent 

lower than without an RBS approach, and leakage becomes negligible (Table 19). 

Table 18. Evaluation of inspection effort, or number of samples taken, for the Urbania fresh produce pathway using 

skip-lot sampling. 

Parameter Description Values with RBS 

  Standard Higher Intensity 

nNorm Sample size, qualifying inspections (no.)a 19 38 

Pa Mean Pa (proportion)b 0.981 0.963 

D Mean defectives per lot (no.) 5 5 

FRed Fraction of lots under reduced inspection (all f) 0.97 0.80 

LRed Lots with reduced inspection (no.) 96,712 80,427 

LQ Lots with qualifying inspection (no.) 3,288 19,604 

MQ Total samples taken in qualifying inspections (no.) 62,472 744,952 

MRed Total samples taken in reduced inspections (no.) 208,145 1,146,080 

Mtot Total samples in all RBS inspections (no.) 270,617 1,891,032 

MSaved Total samples saved by using RBS (no.)c 1,629,383 1,908,968 

 Proportional savings in samples taken 0.858 0.502 
a Hypergeometric 
b Pa values have been adjusted for p = 0.5 
c Compared to inspections without RBS at the same nNorm 

 

Table 19. Evaluation of leakage, or number of defective units accepted, and total time taken, with skip-lot sampling 

at normal or enhanced sampling intensity, for the Urbania fresh produce pathway. 

Description Values under RBS 

 Standarda Higher Intensityb 

Mean accepted nonconforming lots, qualifying (no.)  1,613 9,440 

Mean accepted nonconforming lots, reduced (no.)c 48,254 39,658 

Mean accepted nonconforming lots, total (no.) 49,867 49,098 

Total defective units accepted (no.) 249,335 245,490 

Leakage (increase in defective units, no.)d 4,015 170 

Proportional increase 0.016 0.001 

Inspection time (person hours) 32,047 111,969 

Clearance time (person hours) 42,879 25,134 

Total time taken (person hours) 74,925 137,103 

Time savings (person hours)e 150,075 87,898 

Proportional decrease 0.667 0.391 
a nNorm = 19 
b nNorm = 38 
c Includes lots cleared without inspection 
d Relative to mean accepted nonconforming lots without RBS (= 245,320) 
e Relative to the time taken without RBS (= 225,000 person hours) 
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End of case studies. The case study examples end here, because planning, review, and 

monitoring are more dependent on particular circumstances (e.g., organizational structure) and 

on NPPO resources and processes. 

5.5.5. Step 5 – Develop a plan to provide feedback on inspection outcomes 

In a recent study on the economics of RBS, Australian researchers found that providing feedback 

to importing entities about inspection outcomes was critical to influence improvements in 

product nonconformity rates (Rossiter et al., 2016). Unless importing entities are aware of their 

history of biosecurity compliance, they may not know about their non-conformities, and 

therefore may not appreciate that they are missing out on available incentives if they take 

corrective actions.  

Importing entities that closely monitor how many non-conforming lots get returned, destroyed, 

or treated may be more informed, but many of them build such costs and losses into their 

business plans and may not appreciate the potential savings in time and money. Even those that 

monitor costs and losses may be unclear on how much their profits or customer satisfaction 

might improve.  Finally, quality improvement may involve costs or disruption to established 

production practices, so some importing entities may not want to initiate changes unless the 

benefits are well understood. Therefore, developing an effective plan for communicating 

inspection outcomes to importing entities is an essential step for ensuring the success of 

implementing an RBS program, and for maximizing the program’s potential to reduce pest risks. 

Creating the communications plan before implementing RBS is important, so that required 

information and analytical results can be identified and built in, and processes worked out, before 

they are needed. 

The basic objectives of the communication plan are to 1) summarize recent inspection outcomes, 

and, if appropriate, 2) meaningfully convey the costs incurred (or the incentives missed) by not 

being more in compliance. This latter point may be as simple as indicating how many lots received 

normal inspection instead of reduced inspection. However, creating an effective communications 

plan involves some technical and procedural issues, and perhaps legal or regulatory issues as 

well. Some of these may include the following: 

• Correctly identifying the importing entities with which to communicate 

• Following NPPO guidelines for external communications 

• Determining the frequency of feedback  

• Summarizing/presenting data in a meaningful way, and at the appropriate level of detail 

• Estimating what savings could have been achieved if quality/compliance had been higher 

• Automating that process so far as possible 
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The most important issue is that communications are delivered to an importing entity that is 

capable of effecting product quality. Leveraging existing business communication processes 

between importers, brokers, and suppliers may be viable (Rossiter et al., 2016). Third parties may 

be utilized at times, but direct communications by the NPPO are recommended.  The 

communication/feedback process needs to account for any legal or regulatory restrictions and 

maintain appropriate levels of security and privacy. NPPOs may have specific units for external 

communications, so those groups would need to be consulted and integrated into the process. 

The NPPO should regularly monitor inspection outcomes (see 5.5.6), and feed information to the 

communication/feedback effort. The timing and regularity of reports can be tailored to the 

monitoring process, although long delays between reports limit the ability of importing entities 

to improve product quality and take advantage of incentives (see section below for more 

information).  

NPPOs need to decide how much information to provide. Is it enough to indicate the number of 

conforming/non-conforming lots by commodity, or is there interest or need to provide more 

detailed information about the non-conformities (e.g., pest identity)?  

Information automation is critical, because constantly providing information to several importing 

entities will be challenging. The Australian PPO created a script for the open-source statistical 

program R that takes relevant results from a dataset, and compiles individualized importing 

entity reports for mass emailing, including all standard explanatory text (Brent, 2016). One means 

of managing the scope might be to limit reporting to those importing entities that have met a 

minimum volume threshold over the last few reporting cycles.  

Providing some estimate of the gains the importing entity could achieve if product quality is 

improved may be important. This could motivate them to comply, especially if their business 

plans already account for potential losses and treatment costs, and those are not being exceeded. 

Even if the estimated savings seem negligible—perhaps because most incoming goods on the 

pathway are already high quality—the feedback could emphasize the importance of maintaining 

that quality level.  

5.5.6. Step 6 – Review and finalize the scheme(s) and feedback plan 

This step involves an internal review of the new inspection scheme(s) and feedback plan, and 

perhaps an external review by or a consultation with stakeholders. This step might be applied 

iteratively with Steps 2-4. The goals of the internal review are to ensure that the plan is feasible, 

contains all the relevant information, and is likely to achieve its objective. The review might also 

educate the NPPO about the program and facilitate the program buy-in process. The latter may 

be especially important if RBS is being implemented for the first time, because new approaches 

may be unfamiliar and viewed with some skepticism. Good practices during an internal review 
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include ensuring the participation of relevant experts and affected NPPO units, and responding 

explicitly and transparently to all suggestions, comments, and questions. 

The goals of an external review would include ensuring that the program and incentives are 

understood, and that the types and levels of incentives are acceptable and meaningful to 

stakeholders. Relevant stakeholders might include producers or importers; industry associations 

(at any level); and partnering agencies.  An external review by these stakeholders will allow them 

to begin planning for any changes in their normal production or shipping practices that may need 

be altered to utilize the incentives. 

5.6. Implement inspection scheme 

5.6.1. Step 7 – Rollout planning 

The rollout of new RBS scheme(s) could include regulatory updates, creating or updating manuals 

and other documentation, final programming and tuning of data systems or sample size 

calculators, and making NPPO organizational adjustments to staffing or assigned responsibilities. 

In addition, some training and outreach to staff, managers, and stakeholders and other relevant 

parties will also be needed.  It is critical to identify any tasks that need completion before the RBS 

scheme can be implemented. Having a thorough and complete listing of the tasks will facilitate 

tracking and completion. Essential tasks and activities might include the following: 

• What materials need to be developed, updated, or prepared? 

o Regulations 

o Sampling tools or calculators 

o Data system programming requirements or plans 

o Briefing papers/reports justifying/explaining the RBS scheme and its specifications 

o Training and outreach materials 

• What actions are required before the RBS scheme can be initiated? 

o Approval of the program and commitment from the NPPO 

o Union/employee/managerial notifications 

o Stakeholder notification or consultation 

o Training and outreach 

o Hiring staff or restructuring units 

o Understanding/agreement concerning roles and responsibilities for the RBS 

scheme processes 

o Alpha or beta testing of sampling calculators or data system processes 

• When do required steps need completion before implementation? 

• When will the RBS scheme/program formally start?  
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5.6.2. Step 8 – Create or update manuals and other documentation  

Many NPPOs document entry conditions for plant products and information on inspection 

protocols in official manuals. These materials may need updating to describe the new RBS 

scheme. The level of detail will vary depending on what other materials the NPPO will provide to 

staff and stakeholders. In addition, work instructions or job aids may need to be developed or 

may need updating. Such documents may be used to provide needed details or tips for staff as 

they carry out specific tasks.  

One recommended activity is to create a communications plan for the RBS program in general 

and for the group managing the RBS program. This is different than the plan discussed earlier to 

communicate inspection outcomes to stakeholders. The scope of the group communications plan 

is broader. The goal of this communications plan is to identify information needs, which parties 

need the information, how information delivery will occur, and how often communications will 

take place. 

5.6.3. Step 9 – Complete all other requirements 

Examples of tasks and requirements needing completion before implementation of the RBS 

program were listed above.  

It might also be logical to consider a short-term trial of the proposed RBS scheme. Pilot programs 

are an excellent way to evaluate schemes on a limited basis before the entire program is set in 

motion. It would allow the NPPO to return to plan adjustments without too much lost time, 

resources, or effort. A pilot test might also serve as a live introduction of the program to 

stakeholders. Trial programs can take many forms, from “beta” tests of new sampling tools by 

inspectors, to simulations, to actual test implementations on parts of pathways (e.g., 2-5 

commodities or volunteering importers).  

5.6.4. Step 10 – Training and outreach 

5.6.4.1. Training 

Some NPPO staff might need to be trained to carry out the basic procedures of the new 

inspection scheme(s).  Also, some outreach may be needed for staff or stakeholders who are not 

directly involved in import processing and inspections but are either indirectly affected by them 

within the NPPO (or other agencies), or participate within the supply chain in some way, and 

therefore have economic or other interests in its operation.  

Training should provide NPPO staff with the information needed to successfully implement the 

RBS scheme. We suggest determining the following with as much detail as needed to prepare the 

NPPO for implementation: 
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• Who needs to learn about the plan? 

• What does each group need to know about the plan? 

• When are the relevant parties available for delivery of training/outreach? (How much 

time is needed?) 

• How and where do we plan to deliver the needed information? 

 

The format and content of training will be specific to the NPPO and the RBS program being 

implemented. As part of this activity, NPPOs should provide time for familiarization with any 

required procedures, particularly entering required information and determining sample sizes.  

5.6.4.2. Outreach 

The goal of outreach is to provide sufficient information about the new program to all interested 

parties and address their concerns and questions to the extent possible before implementation. 

External stakeholders, particularly importers and other supply chain entities, likely need 

information about the program, especially for maximizing the use of incentives. Outreach could 

include helping NPPO units affected indirectly by the coming implementation to understand the 

approach and be able to gauge potential impacts, if any.  For example, in the United States, NPPO 

employees working within states may need to know about changes at ports-of-entry that may 

affect phytosanitary issues and risk in that or nearby states. 

NPPOs may use several different approaches for outreach and communicating using multiple 

means is probably warranted. Outreach approaches may be well established or may need to be 

developed. Some NPPOs use notification processes that may combine email messages with 

online postings. For example, the United States uses a process called stakeholder notification 

(see  USDA-APHIS, 2018), while Australia has a very similar process called industry advice notices’ 

(see DAWR, 2016a).  Australia has also tested online publishing of longer program explanations 

for communicating with stakeholders (see DAWR, 2016b). Likewise, EPPO has both a regular 

publication (EPPO Bulletin) and the EPPO Reporting Service (see EPPO, 2018).  

NPPOs sometimes convene special meetings to present important information directly to 

stakeholders. These allow for two-way communication, but attendance and participation may be 

limited. Online meetings (webinars) may allow more people to attend.  Webinars can be recorded 

and posted for later viewing. Industry groups or associations might offer ways of getting 

messages to stakeholders, but these often will not include every interested party (or the general 

public), so should not be the sole means of communication. 

Whichever communication means are chosen, it is good practice to publish contact information 

for program experts or managers, who can answer any remaining questions or address other 

outstanding issues, or new ones as they arise. 



Risk Based Sampling 
 

95 | P a g e  

 

What should be communicated is another important topic. RBS program details will vary by 

NPPO, but in general the following things may need to be effectively communicated: 

• When the program begins, indicate how long it will last (if it is temporary), and how often 

revisions and updates might be considered 

• Who will be affected by the program 

• What pathways and commodities are covered, and what materials are specifically eligible 

and not eligible 

• How entities or commodities can become eligible for incentives, and whether that 

requires special procedures or practices 

• What cost or time savings entities might realize, if eligible for incentives; and 

• How this program compares to previous processes. 

 

Also, it may be useful to provide offline program documentation which explains the planned 

program, expected impacts, and provides a justification for the planned design and operation. 

5.6.5. Step 11 – Begin the RBS program 

Once preparatory tasks have been completed the RBS program can formally begin. Below are 

some suggestions for making the transition smoother. 

First, expect some startup issues. No matter how well the guidelines, procedures, and systems 

were vetted beforehand, some unforeseen issues or problems are likely to arise. This is especially 

true if operations are spread out in several or ports-of-entry. Often, this may simply mean 

clarifying some policies or helping inspectors adjust to the new procedures or tools. To facilitate 

the startup period, try to ensure that program managers and experts are available to address 

issues and answer questions, and consider posting advisors at some ports, such as those with 

very high import volumes.  

Second, it may be possible to “jump start” reduced inspection statuses in the program. In the 

standard acceptance sampling plans discussed above, all commodities typically begin in 

qualifying inspection (i.e., normal inspection), which might mean significant increases in numbers 

of inspections or samples taken by inspectors at the start of the program. Over time items would 

presumably qualify for reduced inspections, reducing the overall inspection effort, but that 

transition period could take some time and might be too intense or burdensome for staff. To 

reduce that burden, NPPOs could consider pre-qualifying some items for reduced inspection at 

the start. Indeed, the NPPO may well have prior inspection data that can be used to determine 

each pathway’s risk status at the start of the program. To accomplish “jump starting”, use the 

most recent data to identify products with the requisite number of sequential accepted lots, 

according to scheme specifications. These products would begin with reduced inspections status, 
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which would buffer any inspection increases on other products. If needed, program 

implementation could even be delayed for a short time to allow such data to be collected. If the 

new program seems likely not to differ much from the previous program in terms of inspection 

effort, then perhaps this would not be necessary. 

5.7.  Maintain inspection scheme 

After implementation of the RBS inspection scheme, the remaining tasks are monitoring and 

reporting on outcomes, and making any needed program adjustments or revisions.  

5.7.1. Step 12 – Monitoring the operations and outcomes of the inspection scheme  

Monitoring inspection operations and outcomes is an important activity once the RBS scheme 

has been implemented. Monitoring allows us to see if the program meets, exceeds, or fails to 

meet the expected outcomes and levels of safeguarding that were previously estimated (Step 4).  

The metrics evaluated during monitoring would be mostly unchanged: 

• Inspection effort 

• Numbers of cleared versus inspected lots 

• Total pest detections 

• Estimated leakage rates 

 

Other metrics are given in the appendices, and custom calculations for particular programs could 

also be developed. Importantly, post-implementation data can be compared to historical 

inspection performance. Agencies can use these analyses to determine if the RBS scheme is 

performing as expected, or if adjustments may be needed. An important factor to monitor is how 

many commodity combinations (or entities) demonstrate improved quality over time and, as 

such, qualify for reduced inspections. If no trend is evident, it may mean that better feedback to 

importing entities may be needed, or perhaps program adjustments are needed to better 

incentivize the process. 

5.7.2. Step 13 – Adjust inspection schemes as needed 

Based on the results of monitoring, NPPOs could consider making minor modifications to the RBS 

inspection scheme. Examples might include adjusting the reference sampling plan based on a 

revised choice of AOQL (or C and p, if used), or adjusting the clearance number, i. Evaluating the 

potential impact of any suggested changes (Step 4) is recommended before enacting revisions. 

The NPPO can determine if the modifications require full review (Step 6), or new training as part 

of a secondary rollout (Step 7), as well as other activities (Steps 9-10). 
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5.7.3. Step 14 – (Optional) - Make more complex revisions as needed 

Occasionally it might be necessary to make changes to the RBS inspection scheme that go beyond 

simple and straightforward parameter adjustments. For example, if quality does improve over 

time as hoped, then adding new levels for reduced inspections might be considered. Other 

revisions might include: 

• Changing verification levels in the MIL-STD-1916 plan 

• Adding new f levels in a skip-lot sampling plan 

• Changing plans entirely, such as from MIL-STD-1916 to SkSP-2 

• Converting to a different type of reduced inspections in a custom RBS plan 
 

Because these are more consequential changes, they will require some explanation and 

justification based on evidence from recent program outcomes. They probably also require new 

estimates of potential impacts (as in Step 4), perhaps based on information that was not available 

when the scheme was first developed and implemented. Unlike the minor adjustments 

considered in the previous step, more complex revisions probably require a complete evaluation 

and review—Steps 4 and 6—and perhaps some of the implementation and rollout activities 

presented in Steps 7 to 10, before formally implementing the revised program. 

5.8. Implementing ratings-based programs 

5.8.1. Background – why choose a ratings-based plan? 

An alternative to the acceptance sampling plans discussed above, is to establish a program based 

on ratings for eligible commodity combinations. In this approach, the NPPO uses collected data 

on inspection outcomes to rate commodity combinations (e.g., high-risk/low-compliance or low-

risk/high-compliance). The ratings determine whether the commodity combination is subjected 

to reduced, normal, or tightened inspections. This type of program is also called profiling in many 

international jurisdictions (see  Clarke et al., 2017). Imports and inspections proceed accordingly 

with regular updates of the ratings. 

In the United States, the USDA-APHIS-PPQ established a ratings-based program called the 

National Agriculture Release Program (NARP) in 2004. NARP consisted of a list of country-

commodity combinations that qualified for a reduced frequency of inspections based on import 

volume thresholds, the fraction of these imports that were non-conforming, and a review of the 

identities of the intercepted pests. Ratings were generally updated once per year, but industry 

stakeholders could request updates on specific commodities at any time that were subject to 

NPPO analysis and approval.  
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A ratings-based system permits proactive risk management in circumstances for which changes 

in biosecurity risk are predictable. For example, there may be a seasonal change in risk that can 

be detected statistically and justified using knowledge of insect biology. Equally, it may be 

possible to better predict the future biosecurity risk of entities based on information about their 

current performance and that of similar entities, by reviewing inspection data (Robinson et al 

2015).  

Some of the limitations of ratings-based plans include: 

• Requirement for enough collected data to allow analysis (and associated delays in 

implementation) 

• Requirement for the establishment of a ratings model 

• Requirement to justify and sufficiently explain the workings of the (new, likely) model and 

rating system to stakeholders 

• Requires about twice as many steps (see below) as a cumulative results plan (Figure 18) 

during its creation phase 

• Requirement to periodically update ratings based on recent inspection outcomes 

• Available data and resulting ratings depend on the time interval between analyses 

• Combinations that do not qualify for reduced inspection at the time of implementation 

cannot qualify until the next update.  
 

The major impact of the limitations listed above is directly related to the final point, as it 

highlights a potentially reduced ability to motivate industry partners to reduce nonconformities. 

The delays in adjusting the ratings-based approach between importers’ instituting improvements 

and receiving incentives are a limitation.  Also, the ratings-based plan may become more about 

the model or ratings definitions and less about the inspection outcomes, especially if eligibility is 

dependent on the actions of other entities or if production improvements do not transparently 

result in greater eligibility. This could put the NPPO on the defensive and allow stakeholders to 

avoid taking responsibility for improvements or cause them to decide it’s not worthwhile. By 

contrast, the “Send X clean shipments” approach to cumulative results plans places the need for 

improvement squarely on stakeholders.  

Currently, dynamic ratings-based programs are rarely used. One exception is a program 

implemented in 2018 by PPQ at all plant inspection stations for imports of propagative materials 

(PPQ, 2018a). Effects of the program on inspection effort and longer-term conformity rates are 

unknown, however. DAWR in Australia uses profiling of the passenger and mail pathways, but 

uses skip-lot sampling for plant product pathways (Brent, 2016; Robinson et al., 2012a). 

Interestingly, ratings-based plans are not discussed in modern texts on acceptance sampling (e.g., 

Schilling and Neubauer, 2017; Shmueli, 2016; Stephens, 2001), nor were they considered during 
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the formative years of acceptance sampling (see Dodge, 1969). For these reasons, we advise 

against implementing a ratings-based RBS program, unless a cumulative results plan cannot be 

used. 

Nevertheless, below we briefly discuss the design and implementation of ratings-based RBS 

programs. The creation and maintenance steps for ratings-based sampling plans are quite 

different than those discussed earlier. The program implementation step, however, closely 

follows the description above (see 5.6.1-5), so it will not be repeated here. 

5.8.2. Creating ratings-based programs 

The overall process is similar to the one described earlier, but the design and maintenance phases 

have additional steps (Figure 20). Implementation is similar to that described above. 

5.8.2.1. Step 1 – Identify pathway(s) of interest 

This is no different from the text included above (see 5.5.1). However, note that particular 

attention should be given when defining and tracking eligible commodity combinations, because 

ratings will eventually need to be calculated for and applied to these commodity combinations. 

5.8.2.2. Step 2 – Collect inspection data for analysis 

To create ratings for the defined commodity combinations, the NPPO must first collect inspection 

data for a predetermined time period. Ideally, ongoing data collection processes (see 5.3.1.4) 

would provide sufficient data, however, some NPPOs may need to begin data collection for the 

first time. We list this as Step 2 to emphasize the need to start this step as soon as possible, since 

data is required to progress to other steps. 

Because the data will be used to calculate commodity combination ratings, how these inspection 

outcomes are quantified is more important here than it was before. Often, NPPOs will collect 

data that allows a reasonably simple estimation of the fraction of non-conforming units (p; aka 

‘action rate’ in the USA, or ‘quarantine failure rate’ in Australia). They may collect less data or no 

data at all on the fraction of non-conforming units (d). Note that estimates of p are approximate 

measures at best because inspection is imperfect and outcomes depend upon both p (the true 

rate, not what is detected) and d, which affects the likelihood of detecting non-conforming units. 

The best measure is likely infestation rate, or number of pests or propagules per inspected unit, 

but this information will rarely be available because collecting the required data is challenging 

and costlier than collecting other data (Caton, 2018). Nevertheless, infestation rate allows the 

prediction of numbers of pests or propagules entering and is the most direct measure of possible 

pest risk. 
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Figure 20. Flowchart for the process of designing, implementing, and maintaining a ratings-based RBS inspection 

scheme. Parentheses list the relevant steps in the text. Dashed lines represent optional paths. 

How much data will be needed depends on the import volume, and also on the method of 

analysis used. Greater volumes mean shorter data collection times, in general, but if eligible items 

are specified with more detail (see 5.5.1.2), then data collection times may lengthen to ensure 

that most combinations have sufficient data. Trade-offs exist between the amount of data 

collected and the uncertainty associated with ratings.  
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Each NPPO will need to decide how much data is enough, and below we provide only some 

general perspectives. Let us assume that the available data has been summarized by lots, and 

that we will estimate mean p and an upper confidence limit using a standard methodology (see 

Ott and Longnecker, 2001). With these assumptions, the upper confidence limit for p for a 

commodity combination with zero non-conformities (denominator = 0) drops below 0.05 at N = 

72, below 0.01 at N = 368, and below 0.005 at N = 597 (a placeholder for the more commonly 

used 600!). 

5.8.2.3. Step 3 – Choose a general inspection scheme 

This is similar to the descriptions provided above (see 5.5.2). 

5.8.2.4. Step 4 – Specify incentive levels 

Completing this step (see 5.5.3.1) before commencing the ratings analysis is important so that 

analysts know, at least approximately, how many ratings categories are needed. However, the 

ratings estimation process and results could impact how the inspection scheme is chosen. For 

example, a very clean pathway might only need two ratings categories - normal and reduced 

inspections. However, if the pathway contains several combinations with a high mean p, the 

NPPO might want to consider including a category for tightened inspections. Consequently, some 

iterations between this step and steps 5 and 6 below may occur (which will add to the program 

development time).  

At this point, NPPOs should also determine how to treat commodity combinations that lack 

sufficient data to make an accurate ratings determination. Possibilities include mandating normal 

inspection levels or requiring increased levels of inspection so that data are more quickly 

collected.  

5.8.2.5. Step 5 – Develop a ratings model 

Calculating the ratings for commodity combinations is the most critical step in the creation of a 

ratings-based RBS plan. But because ratings-based programs have been seldom used, no 

consensus exists for a standard modeling approach. In the NARP program discussed above, the 

standards were 1) exceeding a threshold volume, 2) having no significant pest threats detected 

on the commodity at any time, and 3) having a mean action rate over the defined time-period 

below the defined threshold (of 1 percent). Note that uncertainty in the mean action rate was 

not considered. More recently, the United States NPPO has based some RBS programs on both 

predicted mean p values and an estimate of the associated uncertainty. Robinson et al. (2011) 

argued that risk due to known contamination and risk due to uncertainty could be combined for 

the purposes of designing a sampling scheme. 
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Program eligibility. With these above points in mind, NPPOs might decide to separately assess 

program eligibility. In other words, NPPOs might begin by identifying those commodity 

combinations for which ratings need to be calculated, based on meeting certain volume 

threshold, (low) pest risk potential, or other standards. 

 Modeling methods. Options for a ratings-based model include empirical and model fitting 

methods, and the choice has substantial implications for program creation and operation. 

Empirical methods (see Bolstad and Curran, 2016) use a standardized arithmetical approach for 

which results change over time only due to the new data outcomes. Model fitting methods (see 

Clarke et al., 2013, Kim et al., 2018), by contrast, apply a dynamic statistical approach to (ideally) 

the most recent data, which means that significant model factors and uncertainty thresholds may 

vary for different time periods. The choice of modelling method has important implications for 

the resulting RBS scheme (Table 20). Whichever approach is chosen, best practices involve 

estimating the uncertainty associated with the rating. 

Table 20. Factors related to the choice of modeling methodology that impact ratings-based RBS schemes. (Based 

on Caton, 2018). 

Model Factor Empirical Modeling Model Fitting 

Specificity Each country commodity 
combination estimated 
separately  

All country commodity combinations estimated 
together at once 

Dependency Results are independent Results depend on all included country commodity 
combinations and data 

Ratings derivation Directly determined Indirectly determined because of dependency 

Explicability Standardized model Ambiguous and dynamic model and thresholds 

Revisions/updates Single country commodity 
combinations 

All country commodity combinations determined 
together 

Accumulation of data  Possible Restricted; period-specific data 

Update frequency More frequent (uses historical 
data) 

Less frequent (requires sufficient new data) 

Rating factors Standardized Dynamic 

Uncertainty estimate Integrated into method a Sometimes requires a separate approach (e.g., 
simulation)  

a E.g, true for empirical Bayes 

Recent studies suggest that more complicated inspection optimization approaches do not 

outperform simpler approaches (DeMiguel et al., 2009; Powell, 2015). Moreover, model fitting 

can seriously constrain program capability by reducing administration flexibility, using historical 

data, and by perhaps resulting in ever-changing standards (Caton, 2018). Various other 

considerations come into play depending on model choice (see Decrouez and Robinson, 2013; 

Robinson et al., 2015).  Model fitting methods and their results will likely be more challenging for 

stakeholders to understand, and therefore result in greater skepticism from users. Consequently, 
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simpler estimates are recommended, unless clear evidence exists (i.e., strict validation) that 

more complicated estimates perform markedly better.  

We caution against the formulaic application of statistical fitting routines, which can lead to sub-

optimal or possibly misleading outcomes.  Statistical approaches such as p-values and R2 tell only 

a portion of the important modeling story. Better outcomes will result when model fitting is 

aligned to model application.  In the development of a model for ratings, model performance 

should be assessed in light of the intended use of the ratings as well as its statistical 

characteristics. 

Empirical Bayes method. If ratings will be based upon the mean p (or other similar metric), then 

we favor using the empirical Bayes method, which is useful for summarizing a large number of 

probabilities. Briefly, the method combines the observed proportions into a statistical prior 

distribution (see Appendices F, G). The values of the prior distribution are then combined with 

the observed proportions, one by one, to come up with bespoke predictions. 

The fraction of non-conforming units can be considered as a binomial probability of being non-

conforming. A beta distribution (see Vose, 2000) is a formal, quantitative means of describing the 

estimated binomial probability and the uncertainty around it. Beta distributions are flexible, 

often nonlinear, curves with a continuous range between 0 and 1.  They are described by two 

shape parameters, typically called a and b or α and β. Consequently, the estimation method 

involves finding the best values, a′ and b′, from the new outcomes inspection data and the prior 

values, a0 and b0 (Appendix G). Then an upper confidence interval (e.g., 99 percent limit, p99) can 

be estimated from a′ and b′.  

Compared to using a simple mean p (ratio of non-conforming units to total units inspected), the 

technique improves the analysis by explicitly incorporating the underlying pattern of the data 

into each estimate. Robinson et al. (2015) provide an example in a biosecurity setting along with 

the R script for implementation, using a slightly different technique for determining the prior 

distribution. 

Model validation. Best practices for both approaches discussed above is to validate the model 

results. Often this is done with out-of-sample testing, which involves reserving some portion of 

the dataset from the model estimation activity, so that it remains independent.  This portion of 

the dataset can then be used to assess how well the model performs, by comparing real 

inspection outcomes across the different ratings categories. Some quantitative techniques for 

model estimation explicitly integrate this process and name it as cross-validation (see Arlot and 

Celisse, 2010). 

Model validation is especially important when data are mostly categorical and sparse, which is 

common in biosecurity. Results of within-sample model checking can lead to over-inflated 
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expectations, and potential program failures. Dividing the dataset sample across time is best, to 

ensure that potential seasonal effects do not overshadow model assessment. If two years of data 

are available, then a suggested approach is to use data from one year to fit the model and use 

the date from the second year to assess the quality of the fitted model. The final model – 

constructed in line with the best approach discovered under cross-validation – can then be fitted 

using all the data. 

Failure of the model during validation likely means restarting this activity. At worst, it could mean 

collecting more, or different data, further delaying program implementation. 

5.8.2.6. Step 6 – Calculate model estimates and assign ratings 

Once the modeling method has been chosen and the data has been partitioned into training 

(model specification) and test (validation) sets, the analysis can proceed. Model fitting can be 

fairly complicated approach to selecting and specifying the final model. Full consideration of all 

aspects of the model fitting approach is beyond the scope of this chapter, but see Clarke et al. 

(2017) for examples of model fitting in a biosecurity setting, and Burnham and Anderson (2003) 

or Johnson and Omland (2004) for more information.  

After producing parameter estimates and associated uncertainties for all combinations, the 

results are used to classify the combinations into discrete groupings by rating. Defining these 

groupings (or profiles) is a somewhat challenging process (see Linacre, 2002) that NPPOs will 

need to individually develop and justify. The simplest approach might be to set thresholds based 

only on the upper confidence limit, but various combinations using both mean p and p99 (above) 

are also possible. Statistical means of finding the best performing grouping are available (see 

Robinson et al., 2015). Somewhat arbitrary choices that meet specified quality levels (e.g., not 

likely to be greater than a 0.05 non-conformity rate) can also be used and may vary less than 

statistically determined thresholds. At a minimum, analysts should evaluate and perhaps tune 

their ratings performance using the test dataset. 

5.8.2.7. Step 7 – Specify details of the inspection scheme 

Once the ratings structure has been selected, it should be possible to completely specify the 

details of the full inspection scheme (see 5.5.3.2 and 5.5.3.3). 

5.8.2.8. Step 8 – Evaluate the inspection scheme 

This activity is very similar to one described above (see 5.5.4), where it is suggested to at least 

estimate the inspection effort required for the program, as well as time necessary to perform 

inspections, and leakage.  
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Note that an important analytical component for ratings-based programs is the proportion of 

combinations in each rating category. This will be used to directly estimate the number of arriving 

lots that receive normal, reduced, or tightened inspections. Normal inspections would include 

items rated as normal (however this was characterized), and, depending on how the program is 

formulated, items that may not have qualified because of low import volumes. Estimates for each 

category will need to be summed to determine overall program totals and expected 

performance. 

5.8.2.9. Step 9 – Develop the program maintenance and feedback plan 

This step involves creating the feedback plan, as described above (see 5.5.5), but also requires 

NPPOs to specify how and when ratings will be updated. The timeline determination will involve 

tradeoffs between how long data needs to be collected and how often ratings can be updated to 

allow new commodity combinations to qualify for reduced inspections (or earn increased 

inspections). More frequent updates would be facilitated by using an empirical modeling 

approach because it is simpler and requires less new data. 

5.8.2.10. Step 10 – Review and finalize the scheme(s) and feedback plan 

All nine tasks described above need to be completed before a ratings-based plan can be 

implemented. This step is similar to that described above (see 5.5.6), except that if the review 

identifies any required changes in modeling and ratings specifications, significant delays can 

occur while repeating Steps 6-8. 

The establishment of a ratings-based RBS plan ends at Step 10.  In the RBS approach discussed 

earlier the program was finalized by Step 6. A ratings-based plan requires additional activities, 

and these extra steps may add more time before program implementation can be effected. 

5.8.3.  Maintenance 

Recall that implementation of the ratings-based inspection scheme would require the same 

implementation steps described earlier and as such, will not be presented again here. We will 

begin the discussion of maintenance activities with Step 15. 

5.8.3.1. Step 15 – Monitoring operations and outcomes of the inspection scheme  

This step is unchanged from Step 12 described earlier (see 5.7.1).  However, an additional metric 

of interest for ratings-based inspection schemes would be estimating quality by ratings 

categories.  Non-separation of ratings based on their performance would be an indication that 

the ratings model is not functioning as intended. Ongoing feedback to stakeholders on inspection 

outcomes should follow the plan created before implementation (see Step 9, 5.8.2.9).  
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5.8.3.2. Step 16 – Update model estimates and ratings  

After a predetermined amount of time set by NPPO experts, the ratings underlying the RBS 

program will need updating. This activity for ratings-based plans is significant, as it is how the RBS 

program stays current, rewards improvements in quality with reduced inspections, and increases 

inspections when quality is suboptimal. Ideally, this activity follows the plan created before 

implementation (see Step 9, 5.8.2.9).  The timeliness for updates is an important consideration – 

if it is too early then needless work is performed, if it is too late then the ratings will be out of 

date. Also, changing ratings with regular frequency – for example quarterly may—intentionally 

or otherwise — capture seasonal changes. However, because current ratings always reflect past 

performance, this update frequency may create a systematic mismatch with current products.   

The update process will be simplest and most straightforward if the model is unchanged. If model 

fitting is used, NPPOs can expect model changes to occur, simply because the underlying data 

will have changed. Any significant model changes, or changes to the threshold levels used to 

assign ratings, will likely need to be reviewed (see Step 10, 5.8.2.10). Changes to ratings 

thresholds (Step 6, 5.8.2.6) should be avoided whenever possible, because they can negatively 

affect program perception and understanding, and, consequently, impact the motivation of 

stakeholders to comply.  

5.8.3.3. Step 17 – Communicate updated results to stakeholders and solicit feedback 

This step uses the same communication processes discussed in Step 10 (see 5.8.2.10) related to 

notification and responses related to program revisions. Notifications without details are not 

sufficient; stakeholders may need help understanding any ratings or model differences and may 

want to discuss their data and resulting classification with the NPPO. They may take issue with 

some aspects of the data, analysis, or results. The delays in updating ratings-based programs adds 

extra sensitivity and concern to communication of the results from each ratings period.  

5.8.3.4. Step 18 – Initiate updates to the inspection scheme 

As described earlier (see 5.6.5) any RBS program can formally be restarted after the review is 

completed and all tasks and adjustments have been completed. Note that the old program, with 

the previous ratings, will remain active until the switchover occurs. This needs to be clearly 

understood by all parties. 

5.8.3.5. Step 19 – Adjust inspection schemes as needed 

Based on the results of monitoring or revisions, NPPOs may need to make minor modifications 

to the inspection scheme. See examples above (see 5.7.2). Note that this activity is different than 

just updating ratings because it affects the sampling inspection plan(s). Also, as before, changes 

may need additional review or secondary roll-out. 
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5.8.3.6. Step 20 – (Optional) Make more complicated revisions as needed 

This optional step allows for more significant changes in the inspection scheme to be developed 

and enacted (see 5.7.3). 

5.9. Conclusions 

We hope this Chapter demonstrates how to effectively design RBS programs that both reduce 

the resources required for inspections and maintain an acceptable level of safeguarding for 

NPPOs. Herein we suggest that the simplest path for an NPPO to begin using RBS in an inspection 

program would be to choose a sampling plan from the standard library of possible options. 

Because these plans have been well vetted from a statistical perspective and have been applied 

by many different industries, it will likely be simpler to understand them and to justify their use 

in plant health. NPPOs might want to slightly adapt these RBS plans to meet their needs by adding 

or deleting (simplifying) some plan features. Creating a new RBS plan from scratch should 

probably be a last resort, especially for NPPOs attempting to use RBS for the first time.  

A lingering question is how much implementation of RBS programs might lead to improvements 

in phytosanitary compliance and result in improved biosecurity. Even under ideal circumstances 

and clear incentives, importers may not always choose to adjust their processes to comply with 

RBS program requirements, for rational economic reasons (Rossiter and Hester, 2017). Within 

the NARP program in the United States, we documented importing entities trying to qualify for 

reduced inspections, but in general we did not notice long-term improvements in conformity 

rates by importing entities. In Australia, recent trial skip-lot sampling programs failed to 

document cases of importing entities making quality improvements to take advantage of reduced 

inspection incentives (Brent, 2016). Researchers at CEBRA in Australia continue their work trying 

to better understand how RBS programs might be redesigned or managed to encourage quality 

improvement and compliance by importing entities (e.g., Rossiter and Hester, 2017); some older 

works may also provide useful insights (see Starbird, 2000). 

Nevertheless, RBS programs and their statistical underpinnings provide the necessary technical 

justification and transparency to inspection which is the most used phytosanitary measure 

around the world. Technical justification is of paramount importance to effect safe and 

predictable trade of plant products. As such, NPPOs need not wait to begin implementing RBS 

programs. If they use a sound design to create a sustainable inspection scheme, configure 

sampling processes to provide trustworthy data, and create incentives for quality improvement 

using sampling schemes that are understandable to importers, they will improve their inspection 

processes and meet their fair WTO and IPPC trade obligations as stated in the WTO-SPS 

Agreement. 
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Inspection including fruit cutting to detect internal pests. 

 Source - https://twitter.com/AgrocalidadEC/status/879820151079804928/photo/1 

 

 
Recording information after completing inspection of Hass avocados. 

Source - https://agroexportaciones.com/2021/03/12/piura-ministerio-de-agricultura-certifica-mas-de-850-
toneladas-de-palta-hass-para-exportacion/ (Main source: diario El Regional de Piura) 

https://twitter.com/AgrocalidadEC/status/879820151079804928/photo/1
https://agroexportaciones.com/2021/03/12/piura-ministerio-de-agricultura-certifica-mas-de-850-toneladas-de-palta-hass-para-exportacion/
https://agroexportaciones.com/2021/03/12/piura-ministerio-de-agricultura-certifica-mas-de-850-toneladas-de-palta-hass-para-exportacion/


Risk Based Sampling 
 

109 | P a g e  

 

6. BIBLIOGRAPHY 
 

Anonymous, No date. Abbreviated Hypergeometric Tables for Risk-Based Sampling in Commodity 
Inspection. Unknown, Unknown. 32 pp. 

ANSI/ASQ. 1993. American National Standard: Sampling Procedures and Tables for Inspection by 
Attributes (ANSI/ASQC Z1.4-1993). American National Standards Institute/American Society for 
Quality (ANSI/ASQ), Milwaukee, WI. 95 pp. 

ANSI/ASQ. 1996. American National Standard: An Attribute Skip-Lot Sampling Program 
(ANSI/ASQC S1 -1996). American National Standards Institute/American Society for Quality 
(ANSI/ASQ), Milwaukee, WI. 22 pp. 

Antila, J., Karhu, T., Mottonen, M., Harkonen, J. and Belt, P. 2008. ‘Reducing test costs in 
electronics mass-production’, International Journal of Services and Standards, Vol. 4, No. 4, pp. 
393-406. 

APHIS- USDA, 2019. Animal and Plant Health Inspection Service- United States Department of 
Agriculture, Plant Protection Today - Smarter Inspections, Stronger Safeguarding. [En línea] 
Available at: https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-
overview/plant-protection-today/articles/rbs 

APHIS. 2016. CBP and Trade Automated Interface Requirements: APHIS (CORE) ACE PGA Message 
Set Implementation Guide. Animal and Plant Health Inspection Service (APHIS), United States 
Department of Agriculture (USDA), Washington, D.C. 410 pp. 

Arlot, S., and A. Celisse. 2010. A survey of cross-validation procedures for model selection. 
Statistics Surveys 4:40-79. 

Arthur, A., S. Zhao, A. P. Robinson, B. Woolcott, E. Perotti, and C. Aston. 2013. Statistical Modelling 
and Risk-Return Improvements for the Plant Quarantine Pathway.  ACERA Project 1206F. 
Australian Centre of Excellence for Risk Analysis (ACERA), Melbourne, Australia. 127 pp. 

Arya, R., Antonisamy, B., & Kumar, S. 2012. Sample size estimation in prevalence studies. The 
Indian Journal of Pediatrics, 79(11), 1482-1488. 

Beale, R., J. Fairbrother, A. Inglis, and D. Trebeck. 2008. One Biosecurity – A Working Partnership. 
Commonwealth of Australia, Canberra. 244 pp. 

Bebbington, M., C. D. Lai, and Govindaraju K, 2003. Continuous Sampling Plans for Markov-
Dependent Production Processes under Limited Inspection Capacity. Mathematical and Computer 
Modelling 38(11):1137-1145 



Risk Based Sampling 
 

110 | P a g e  

 

Blackburn, T. M., P. Pysek, S. Bacher, J. T. Carlton, R. P. Duncan, V. Jarosık, J. R. U. Wilson, and D. 
M. Richardson. 2011. A proposed unified framework for biological invasions. Trends in Ecology 
and Evolution 26(7):333-339. 

Bolstad, W. M., and J. M. Curran. 2016. Bayesian Inference for Binomial Proportion. Pages 149-
168 Introduction to Bayesian Statistics, Third Edition. John Wiley & Sons, Inc., USA. 

Borghers, E., and P. Wessa. 2017. Statistical Distributions - Beta Distribution - Overview and 
Example. Office for Research Development and Education. Last accessed February 27, 2017, 
https://www.xycoon.com/beta.htm. 

Brent, C. 2016. Discussion of Risk-Based Sampling Program. Personal communication to B. P. 
Caton on November 15, 2016, from Biosecurity Assurance, Department of Agriculture and Water 
Resources, Canberra, Australia. 

Burnham, K. P., and D. R. Anderson. 2003. Model Selection and Multimodel Inference: A Practical 
Information-Theoretic Approach (Second Edition). Springer-Verlag, New York. 487 pp. 

Caton, B. P. 2018. Analysis and data challenges associated with risk-based sampling programs. 
Pages 54-61 Proceedings International Symposium for Risk-Based Sampling, Baltimore, 
Maryland, June 26-30, 2017. North American Plant Protection Organization (NAPPO),  Inter-
American Institute for Cooperation on Agriculture (IICA), United States Department of Agriculture 
(USDA), Raleigh, NC, USA. 

Chen, C., R. S. Epanchin-Niell, and R. G. Haight. 2017. Optimal Inspection of Imports to Prevent 
Invasive Pest Introduction. Risk Analysis 38(3):603-619. 

Clarke, S., A. P. Robinson, M. Chisholm, and G. Hood. 2017. Data Mining Final Report. CEBRA 
Project 1031A. Centre of Excellence for Biosecurity Risk Analysis (CEBRA), Melbourne, Australia. 
156 pp. 

Collins, R. D., Jr, K. E. Case, and G. K. Bennett. 1973. The effects of inspection error on single 
sampling inspection plans. International Journal of Production Research 11(3):289-298. 

Daniel, W. W., and C. L. Cross. 2013. Biostatistics: A Foundation for Analysis in the Health Sciences 
(Tenth Edition). John Wiley & Sons, New York. 960 pp. 

DAWR. 2016a. 82-2016 - Importers of peat and selected vegetable seeds may qualify for reduced 
inspections from 29 August 2016. Australian Government, Department of Agriculture and Water 
Resources (DAWR). Last accessed December 4, http://www.agriculture.gov.au/import/industry-
advice/2016/82-2016. 

DAWR. 2016b. Compliance-based inspection trial for peat and selected vegetable seeds. 
Australian Government, Department of Agriculture and Water Resources (DAWR). Last accessed 
December 4, 



Risk Based Sampling 
 

111 | P a g e  

 

https://web.archive.org/web/20160911095215/http:/www.agriculture.gov.au/import/goods/pl
ant-products/risk-return/trial-peat-vegetable-seeds. 

Decrouez, G., and A. Robinson. 2013. Time-Series Models for Border Inspection Data. Risk Analysis 
33(12):2142-2153. 

DeMiguel, V., L. Garlappi, and R. Uppal. 2009. Optimal Versus Naive Diversification: How 
Inefficient is the 1/N Portfolio Strategy? The Review of Financial Studies 22(5):1915–1953. 

Department of Defense. 1996. Test Method Standard: DOD Preferred Methods For Acceptance Of 
Product. MIL-STD-1916. Department of Defense (DOD), Washington, D.C. 28 pp. 

Department of Defense. 1999. Department of Defense Handbook: Companion Document to MIL-
STD-1916. Department of Defense (DOD), Washington, D.C. 127 pp. 

Dodge , H. F. 1943. A Sampling Inspection Plan for Continuous Production. Annals of 
Mathematical Statistics XIV:264-279. 

Dodge , H. F., and H. G. Romig. 1959. Sampling Inspection Tables, Single and Double Sampling 
(Second Edition). John Wiley & Sons, Ltd., New York. 240 pp. 

Dodge, H. F. 1969. Notes on the Evolution of Acceptance Sampling Plans Part I. Journal of Quality 
Technology 1(2):77-88. 

Dodge, H. F. 1977. Keep it simple. Journal of Quality Technology 9(3):102-103. 

ECFE. 2005. Recommendation and Guidelines on establishing a Single Window to enhance the 
efficient exchange of information between trade and government, Recommendation No. 33. 
Economic Commission For Europe (ECFE), United Nations Centre for Trade Facilitation and 
Electronic Business (UN/CEFACT), New York and Geneva, . 33 pp. 

Economic Commission For Europe. 2005. Recommendation and Guidelines on establishing a 
Single Window to enhance the efficient exchange of information between trade and government, 
Recommendation No. 33. United Nations Centre for Trade Facilitation and Electronic Business 
(UN/CEFACT), New York and Geneva. 37 pp. 

EPPO. 2006. Phytosanitary procedures: Sampling of consignments for visual phytosanitary 
inspection. EPPO [European and Mediterranean Plant Protection Organization] Bulletin 36:195-
200. 

EPPO. 2018. Recommendations to policy makers from Euphresco projects. EPPO Reporting Service 
no. 11 - 2018; No. 210. European and Mediterranean Plant Protection Organization (EPPO). Last 
accessed 4 December, 2018, https://gd.eppo.int/reporting/article-6404. 



Risk Based Sampling 
 

112 | P a g e  

 

FAO , 2008. ISPM 31 Methodologies for sampling of consignments. [En línea] Available at: 
https://www.ippc.int/static/media/files/publication/en/2016/01/ISPM_31_2008_En_2015-12-
22_PostCPM10_InkAmReformatted.pdf 

FAO, 2016. Methodologies for sampling of consignments. International Standard for 
Phytosanitary Measures No. 31. Rome. Published by FAO on behalf of the Secretariat of the 
International Plant Protection Convention (IPPC). [Online] Available at: 
https://www.ippc.int/static/media/files/publication/en/2016/01/ISPM_31_2008_En_2015-12-
22_PostCPM10_InkAmReformatted.pdf 

Floyd, R., J. Lima, J. deWaard, L. Humble, and R. Hanner. 2010. Common goals: policy implications 
of DNA barcoding as a protocol for identification of arthropod pests. Biological Invasions 
12(9):2947-2954. 

Fosgate, G. T. 2009. Practical sample size calculations for surveillance and diagnostic 
investigations. Journal of Veterinary Diagnostic Investigation 21(1):3-14. 

Gould, W. P., 1995. Probability of detecting Caribbean fruit fly (Diptera: Tephritidae) infestations 
by fruit dissection. Florida Entomologist, 78(3), pp. 502-507. 

Griffiths DA. 1973. Maximum likelihood estimation for the beta-binomial distribution and an 
application to the household distribution of the total number of casesof a disease. Biometrics 
29:637–48 

Hood, Y., J. Sadler, J. Poldy, C. Starkey, and A. P. Robinson. 2019. Biosecurity system reforms and 
the development of a risk-based surveillance and pathway analysis system for ornamental fish 
imported into Australia. Preventive Veterinary Medicine 167:159-168. 

Hughes G, Madden LV. 1993. Using the beta-binomial distribution to describe aggregated 
patterns of disease incidence. Phytopathology 83:759–63 

IPPC. 2008. International Standards for Phytosanitary Measures, Publication No. 31. 
Methodologies for Sampling of Consignments. International Plant Protection Convention (IPPC), 
Food and Agriculture Organization of the United Nations, Rome, Italy. 24 pp. 

ISO. 2005. International Standard 2859-3 Sampling procedures for inspection by attributes — Part 
3: Skip-lot sampling procedures (Second Edition). International Organization for Standardization 
(ISO), Geneva, Switzerland. 34 pp. 

ISO. 2006. International Standard 3534-2 Statistics–Vocabulary and Symbols—Part  2,  Applied 
Statistics. International Organization for Standardization (ISO), Geneva, Switzerland. 74 pp. 

ISO. 2013. International Standard 3951-1 Sampling procedures for inspection by variables — Part 
1: Specification for single sampling plans indexed by acceptance quality limit (AQL) for lot-by-lot 
inspection for a single quality characteristic and single AQL (Second Edition). International 
Organization for Standardization (ISO), Geneva, Switzerland. 19 pp. 



Risk Based Sampling 
 

113 | P a g e  

 

ISO. 2017. ISO 28590 Sampling procedures for inspection by attributes — Introduction to the ISO 
2859 series of standards for sampling for inspection by attributes. International Organization for  
Standardization (ISO), Geneva, Switzerland. 11 pp. 

Johnson, J. B., and K. S. Omland. 2004. Model selection in ecology and evolution. Trends in Ecology 
& Evolution 19(2):101-108. 

Jones, O., A. P. Robinson, M. Shield, and J. Sibley. 2017. The Allocation of Inspection Resources. 
Pages 1-16 in A. P. Robinson, T. Walshe, M. A. Burgman, and M. Nunn, (eds.). Invasive Species: 
Risk Assessment and Management. Cambridge University Press, Cambridge, United Kingdom. 

Kim, B., S. C. Hong, D. Egger, C. S. Katsar, and R. L. Griffin. 2018. Predictive modeling and 
categorizing likelihoods of quarantine pest introduction of imported propagative commodities 
from different countries. Risk Analysis:15. 

Lane, et al. 2018. Sample size calculations for phytosanitary testing of small lots of seed. CEBRA 
report. 

Lane, S. E., Cannon, R. M., Arthur, A. D., & Robinson, A. P. (2019). Sample size for inspection 
intended to manage risk within mixed consignments. NeoBiota, 42, 59–69.  

Linacre, J. M. 2002. Optimizing Rating Scale Category Effectiveness. Journal of Applied 
Measurement 3(1):85-106. 

Madden LV, Hughes G, Munkvold GP. 1996. Plant disease incidence: inverse sampling, sequential 
sampling, and confidence intervals when observed mean incidence is zero. Crop Prot. 15:621– 32 

Mamber, S. W., T. Mohr, C. Leathers, E. Mbandi, P. Bronstein, and K. Barlow. 2018. Occurrence of 
Salmonella in ready-to-eat meat and poultry product samples from US Department of 
Agriculture–regulated producing establishments. I. Results from the ALLRTE and RTE001 random 
and risk-based sampling projects, from 2005 to 2012. Journal of Food Protection 81(10):1729-
1736. 

Minton, G. 1972. Verification Error in Single Sampling Inspection Plans for Processing Survey Data. 
Journal of the American Statistical Association 67(337):46-54. 

Montgomery, D.C. 2009. Introduction to Statistical Quality Control 6th ed. 

Ott, R. L., and M. Longnecker. 2001. Introduction to Statistical Methods and Data Analysis (Fifth). 
Duxbury Press, Belmont, CA. 1051 pp. 

Perry, R. L. 1973. Skip-lot sampling plans, Journal of Quality Technology 5(3):123–130. 

Powell, M. R. 2015. Risk-Based Sampling: I Don’t Want to Weight in Vain. Risk Analysis 
35(12):2172-2182. 



Risk Based Sampling 
 

114 | P a g e  

 

PPQ. 2015. Agricultural Quarantine Inspection Conversations 1: AQI Reset. Plant Protection and 
Quarantine (PPQ), Animal and Plant Health Inspection Service, U.S. Department of Agriculture, 
Riverdale, MD. 2 pp. 

PPQ. 2016. Agricultural Quarantine Inspection Conversations 10: Inspection for Information. Plant 
Protection and Quarantine (PPQ), Animal and Plant Health Inspection Service, U.S. Department 
of Agriculture, Riverdale, MD. 2 pp. 

PPQ. 2018a. APHIS Will Adjust Risk-Based Sampling Procedures at Plant Inspection Stations on 
September 30, 2018. Plant Protection and Quarantine (PPQ), Animal and PLant Health Inspection 
Service (APHIS), U.S. Department of Agriculture. Plant Protection and Quarantine (PPQ), Animal 
and PLant Health Inspection Service (APHIS), U.S. Department of Agriculture, Washington, D.C. 
Last accessed June 2, 2021, 
https://content.govdelivery.com/accounts/USDAAPHIS/bulletins/20b5d77. 

PPQ. 2018b. Manual for Agricultural Clearance (Second edition). United States Department of 
Agriculture, Marketing and Regulatory Programs, Animal and Plant Health Inspection Service, 
Plant Protection and Quarantine (PPQ), Washington, DC. Last accessed 
http://www.aphis.usda.gov/import_export/plants/manuals/ports/downloads/mac.pdf. 

Ramírez Guzmán, M. E., 2017. Predictive phytosanitary model for quarantine pests. Proceedings 
International Symposium for Risk- Based Sampling, pp. 65-73. 

Roberts, J., S. Low-Choy, F. Jarrad, and K. Mengersen. 2015. Common Statistical Distributions 
Used in Statistical Modelling and Analysis for Biosecurity Surveillance. Pages 348-361 in F. Jarrad, 
S. Low-Choy, and K. Mengersen, (eds.). Biosecurity Surveillance: Quantitative Approaches. CABI, 
Wallingford, Oxfordshire, U.K. 

Robinson, A. 2018. Inspection Protocol of Department of Agriculture and Water Resources, 
Australia. Personal communication to B. Caton on July 12, 2018, from  

Robinson, A. P., & Hamann, J. D. (2008). Correcting for spatial autocorrelation in sequential 
sampling. Journal of Applied Ecology, 45(4), 1221–1227.  

Robinson, A. P., M. Chisholm, R. Mudford, and R. Maillardet. 2015. Ad hoc Solutions to Estimating 
Pathway Non-compliance Rates Using Imperfect and Incomplete Information. Pages 167-180 in 
F. Jarrad, S. Low-Choy, and K. Mengersen, (eds.). Biosecurity Surveillance: Quantitative 
Approaches. CABI, Boston, MA. 

Robinson, A., Cannon & Rob, M. A. B. &., 2011. Allocating surveillance resources to reduce 
ecological invasions: maximizing detections and information about the threat. Ecological 
Applications, pp. 1410- 1417. 



Risk Based Sampling 
 

115 | P a g e  

 

Robinson, A., J. Bell, B. Woolcott, and E. Perotti. 2012a. AQIS Quarantine Operations Risk Return, 
ACERA 1001 Study J: Imported Plant-Product Pathways, Final Report. Australian Centre of 
Excellence for Risk Analysis (ACERA), Melbourne, Australia. 100 pp. 

Robinson, A., M. Burgman, and R. Cannon. 2011. Allocating surveillance resources to reduce 
ecological invasions: maximizing detections and information about the threat. Ecological 
Applications 21(4):1410–1417. 

Robinson, A., R. Cannon, and S. Goldie. 2012b. DAFF Biosecurity Quarantine Operations: Risk-
Based Approach, ACERA 1001 Study H Overview of Case Studies. Australian Centre of Excellence 
for Risk Analysis (ACERA) and Department of Agriculture, Fisheries and Forestry (DAFF), Australia, 
Melbourne, Australia. 29 pp. 

Rossiter, A., and S. M. Hester. 2017. Designing Biosecurity Inspection Regimes to Account for 
Stakeholder Incentives: An Inspection Game Approach. Economic Record 93(301):277-301. 

Rossiter, A., S. Hester, C. Aston, J. Sibley, G. Stoneham, and F. Woodhams. 2016. CEBRA Project 
1304C: Incentives for Importer Choices, Final Report. Centre of Excellence in Biosecurity Risk 
Analysis (CEBRA), Melbourne, Australia. 133 pp. 

Schilling, E. G., and D. V. Neubauer. 2017. Acceptance Sampling in Quality Control (3rd). Chapman 
and Hall/CRC, New York. 882 pp. 

Schilling, E., 1982. Acceptance sampling in quality control. ASQC Quality Press. United States of 
America: s.n. 

Shmueli, G. 2016. Practical Acceptance Sampling: A Hands-On Guide (Second Edition). Axelrod 
Schnall Publishers, USA. 106 pp. 

Springborn, M. R., A. R. Lindsay, and R. S. Epanchin-Niell. 2018. Risk-based Inspection: Setting 
policy parameters to harness enforcement leverage. Pages 48-53 Proceedings International 
Symposium for Risk-Based Sampling, Baltimore, Maryland, June 26-30, 2017. North American 
Plant Protection organization (NAPPO), Inter-American Institute for Cooperation on Agriculture 
(IICA), United States Department of Agriculture (USDA), Raleigh, NC, USA. 

Squeglia, N. L. 2008. Zero Acceptance Number Sampling Plans (Fifth Edition). ASQ Quality Press, 
Milwaukee, Wisconsin. 35 pp. 

Starbird, S. A. 2000. Designing Food Safety Regulations: The Effect of Inspection Policy and 
Penalties for Noncompliance on Food Processor Behavior. Journal of Agricultural and Resource 
Economics 25(2):616-635. 

Stephens, K. S. 1995. Volume 4: How to Perform Skip-Lot and Chain Sampling (Second Edition). 
ASQC Quality Press, Milwaukee, WI. 64 pp. 



Risk Based Sampling 
 

116 | P a g e  

 

Stephens, K. S. 2001. The Handbook of Applied Acceptance Sampling: Plans, Principles, and 
Procedures. ASQ Quality Press, Milwaukee, WI. 538 pp. 

United Nations. 2011. Key Factors in Establishing Single Windows for Handling Import/Export 
Procedures and Formalities: Trade Facilitation and the Single Window. United Nations Economic 
and Social Commission for Western Asia (Escwa), New York. 89 pp. 

USDA-APHIS. 2018. APHIS Will Adjust Risk-Based Sampling Procedures at Plant Inspection 
Stations on September 30, 2018. United States Department of Agriculture (USDA), Animal and 
Plant Health Inspection Service (APHIS), Washington, D.C. Last accessed December 12, 
https://content.govdelivery.com/accounts/USDAAPHIS/bulletins/20b5d77. 

Venette, R. C., Moon, R. D. & Hutchison, W. D., 2002. Strategies and Statistics of Sampling for 
Rare Individuals. Annual Review of Entomology, pp. 143-174. 

Vose, D. 2000. Risk Analysis: A Quantitative Guide (2nd). John Wiley & Sons, Ltd., New York. 418 
pp. 

Wan, H., X. Xu, and T. Ni. 2013. The incentive effect of acceptance sampling plans in a supply 
chain with endogenous product quality. Naval Research Logistics 60(2):111-124. 

Williamson, M., and A. Fitter. 1996. The varying success of invaders. Ecology 77:1661-1666. 

Wolter, K. M., 1985. Introduction to Variance Estimation. Springer-Verlag, New York. 

WTO. 2014. The Trade Facilitation Agreement: An overview. World Trade Organization. Last 
accessed https://www.wto.org/english/tratop_e/tradfa_e/tradfatheagreement_e.htm. 

Yamamura, K. 1995. Estimation of the Pest Prevention Ability of the Import Plant Quarantine in 
Japan     

Yamamura, K., H. Katsumata, J. Yoshioka, T. Yuda, and K. Kasugai. 2016. Sampling inspection to 
prevent the invasion of alien pests: statistical theory of import plant quarantine systems in Japan. 
Population Ecology 58:63-80. 

Yamamura, K., Katsumata, H., Yoshioka, J., Yuda, T., & Kasugai, K. (2015). Sampling inspection to 
prevent the invasion of alien pests: statistical theory of import plant quarantine systems in Japan. 
Population Ecology, 58(1), 63–80.  
 

 

 

 



Risk Based Sampling 
 

117 | P a g e  

 

7.  APPENDICES 
 

Appendix A — Sample size calculations 
 

Binomial approximation of hypergeometric distribution 

The function for sample size, n, based on the binomial distribution is (Fosgate, 2009): 

n = log(1 − C) / log(1 − p)               [Eqn. A1] 

where C is the confidence level and p is the acceptable nonconformity rate (or prevalence level worth 

detecting).16  

Hypergeometric distribution 

The hypergeometric function for sample size is (Fosgate, 2009): 

n = [1 − (1 − C)1/D] × [N − ((D − 1) / 2)]                      [Eqn. A2] 

where D is the expected number of defective units in the population, and N is the population size (total 

quantity of units). In practical terms, estimate mean D as follows: 

 D = N × d                 [Eqn. A3] 

where d is the proportion of defective units. If unknown, one might assume d = p. 

For both hypergeometric equations above, rounding to the nearest integer may sometimes be necessary. 

For example, N = 999 and p = 0.015 (assuming d = p) gives D = 14.9. A fractional unit is likely not possible 

(e.g., fruit, seeds, plants), so that value should be rounded to 15 for use in Eqn. A2. Likewise, N = 999, D = 

15, and C = 0.95 gives n = 179.6. Calculated values of n should always be rounded up to the next integer, 

to avoid undersampling (Fosgate, 2009). 

Sample size as a function of AOQL 

Based on an equation for calculating AOQL from n, published by Dodge and Romig (1959), the following 

function determines n from desired AOQL for single sampling plans (Stephens, 2001): 

 n = (y × N) / [(AOQL × N) + y]              [Eqn. A4] 

where y is a function of acceptance number, c. The value of y for c = 0 is 0.3679. Some example values 

are shown for a lot size of 1000 below (Table A1). Note that there is no simple function for relating AOQ 

to n, because AOQ varies with p. 

To find AOQL (technically, AOQL1) given n, the function is: 

 
16 This equation can be rearranged to find any one value if the other two are known: 
 C = 1 − 10^(n × log(1 − r))    

r = 1 − 10^([log(1 − C)] / n)  
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 AOQL1 = y × [(1/n) − (1/N)]                [Eqn. A5] 

Table A1. Sample sizes, n, as a function of AOQL (Eqn. A4) for a lot size, N, of 1000. 

AOQL Sample size, n  AOQL Sample size, n 

 Calculated Rounded up   Calculated Rounded up 

0.001 269.0 269  0.035 10.4 11 

0.002 155.4 156  0.040 9.1 10 

0.003 109.2 110  0.045 8.1 9 

0.004 84.2 85  0.050 7.3 8 

0.005 68.5 69  0.055 6.6 7 

0.006 57.8 58  0.060 6.1 7 

0.007 49.9 50  0.065 5.6 6 

0.008 44.0 44  0.070 5.2 6 

0.009 39.3 40  0.075 4.9 5 

0.010 35.5 36  0.080 4.6 5 

0.015 23.9 24  0.085 4.3 5 

0.020 18.1 19  0.090 4.1 5 

0.025 14.5 15  0.095 3.9 4 

0.030 12.1 13  0.100 3.7 4 

 

Appendix B — Probabilities of acceptance (hypergeometric)  
 

Probability of acceptance of a lot from hypergeometric distribution 

Use the defined Excel function as follows: 

Pa = HYPGEOM.DIST(x,n,D,N,FALSE)          [B1] 

where x is the number of defectives found (= 0 if determining baseline probability of acceptance), n = 

sample size, D = expected (mean) number of defectives in the lot, N = lot size, and ‘false’ indicates not to 

return a cumulative value.  

Probability of acceptance adjusted by fraction nonconforming 

The standard calculation for Pa above, when applied to a series of incoming lots, assumes every lot has D 

defectives in it, i.e., p = 1 (fraction nonconforming). That may not always be true, however. If p < 1.0, then 

Pa needs to be adjusted before being applied to a series of lots. The basic idea is to reduce the fraction of 

lots rejected, Pr, by the proportion of lots that are conforming (i.e., have zero defectives). Adjust it as 

follows: 

 1. Baseline probability of rejection of lot: Pr = 1 − Pa        [B2] 

2. Pr that is truly nonconforming on average: Pr-adj = Pr × p       [B3] 
3. Adjusted Pa: Pa-adj = 1 − Pr-adj           [B4] 
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Appendix C — General evaluation metrics  
 

Mean number of lots inspected during standard (qualifying) inspection: 

UQ = (1 – Pa
i) / (Pa

i × (1 – Pa))           [C1] 

where Pa is the probability of acceptance under the reference plan, and i is the clearance interval. This 

value should be rounded up to the nearest integer. It estimates how many lots must be inspected, on 

average, before the lots become eligible for reduced inspection.   

Mean number of lots inspected until a rejection: 

Urej = 1 / Pr = 1 / (1 – Pa)            [C2] 

where Pr is the probability of rejection under the relevant sampling plan (reduced, likely). This value 

should be rounded up to the nearest integer. It estimates how many lots will be inspected, on average, 

before one is rejected because of a nonconformity.   

Estimating proportions of lots in qualifying and reduced inspections: 

1. Calculate UQ based on Pa for qualifying inspections [Eqn. C1]. 

2. Calculate Urej based on Pa for reduced inspections [Eqn. C2]. 

3. The sum of UQ and Urej is the expected total run length from the start of qualifying inspections to 

the end of reduced inspections, on average, Utot. 

4. The total number of lots arriving, L, divided by Utot is the average number of switches (S) to 

reduced inspections and back to qualifying inspections over the entire series of arriving lots. This 

can be rounded to the nearest integer. 

5. The product of UQ and S is the total number of lots in qualifying inspections, LQ. LQ divided by L is 

the associated proportion. 

6. The difference between L and LQ is the number of lots in reduced inspections, Lred. The 

difference between 1 and the proportion of qualifying lots is the proportion of lots in reduced 

inspections. 
 

Appendix D — Evaluation metrics for reduced intensity schemes 
 

D1. Total samples taken 

The following describes one general approach for estimating the total numbers of samples taken in the 

proposed inspection scheme and without the RBS program.  

1. Estimate the total number of lots (L) that are expected for this commodity or pathway.  

2. The product of L and nNorm is the total number of samples taken without RBS. 

3. Determine or estimate Pa values for both the qualifying (Pa-Q) and reduced (Pa-Red) inspection 

phases, which depend on n, d, N, and, if considered, p (Appendix B).  
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4. Estimate the proportion of lots which will be inspected during qualifying inspections and 

reduced inspections. This estimate depends on mean lots inspected during qualifying inspection 

to reach i cleared sequential lots with Pa-Q, and upon the mean run length during reduced 

inspection with Pa-Red (Appendix C).  

5. Using the proportions determined above, find the number of lots in qualifying inspection (LQ) 

and in reduced inspection (LRed). Multiply each by n (nNorm or nRed) to determine the total number 

of samples taken for each. 

6. The sum of those numbers is the total number of samples taken under RBS. 
 

D2. Total time taken 

Some values estimated above are reused here. The approach is as follows: 

1. Estimate how long each relevant step in the inspection process should take under both 

qualifying and reduced inspections (e.g., Table 9), and the total time for each in person-hours 

(hQ and hRed). 

2. The product of hQ and L (total lots) is the estimated time for inspections without RBS. 

3. The product of hQ and LQ is the estimated time for qualifying inspections. 

4. The product of hRed and LRed is the estimated time for reduced inspections. 

5. The sum of those quantities is the total time for inspections under the RBS program. 
 

D3. Leakage 

Some values estimated above are reused here. The approach is as follows: 

1. From d and N, estimate the mean number of defective units, D, in a nonconforming lot. 

2. Multiply LQ and Pa-Q, and then LRed and Pa-Red, to determine the number of lots accepted in 

qualifying and reduced inspections. Sum these to find the total lots accepted (LA). 

3. Multiply LA by p to estimate total accepted nonconforming lots (LA-NC). 

4. Multiply LA-NC and D to estimate the total number of defective units accepted.  

5. For comparison to the non-RBS program, perform the same calculations on all lots but with no 

reduced inspections (i.e., Pa-Q only). 

 

Appendix E — Evaluation metrics for reduced frequency schemes 
 

E1. Total samples taken 

The approach is as follows: 

1. Estimate the total number of lots that are expected for this commodity or pathway (L). 

2. The product of nNorm and L is the total number of samples taken without RBS. 

3. Determine or estimate Pa values for both the qualifying (Pa-Q) and reduced (Pa-Red) inspection 

phases, which depend on n, d, N, and, if considered, p (Appendix B).  
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4. Estimate the proportions of lots inspected during qualifying and reduced inspections. These 

depend on mean lots inspected during qualifying inspection to reach i, and upon the mean run 

length during reduced inspection (a function of Pa-Red) (Appendix C).  

5. The number of lots inspected during qualifying (LQ) is the product of L and the proportion of 

qualifying inspections. The number of lots subject to reduced inspections, LRed, is the difference 

between L and LQ. 

6. The product of LQ and nNorm is the number of samples taken in qualifying inspections (mQ). 

7. The estimated number of lots inspected under reduced inspection (LI-Red) is the product of LRed 

and f, the mean proportion of those lots which get inspected. The number of lots cleared 

without inspection (LC) is L minus both LQ and LI-Red. [Total lots inspected, LI-tot, is L minus LC.] 

8. The product of LI-Red and nNorm is the number of samples taken in reduced inspections (mRed). 

9. The sum of mQ and mRed is the total number of samples taken under RBS (mTot). 
 

E2. Total time taken 

The approach is as follows: 

1. Estimate how long each relevant step in the inspection process should take under inspections, 

and the total time (hI), and how long each step takes when lots are only being cleared without 

inspection, and the total time (hC) (Table 9). 

2. The product of hI and L (total lots) is the estimated time for inspections without RBS. 

3. The product of hI and LI-tot is the estimated time for RBS inspections. 

4. The product of hC and LC is the estimated time taken in the RBS program to clear lots without 

inspection. 

5. The sum of those quantities is the total time for inspections and clearances under the RBS 

program. 
 

E3. Leakage 

The approach is as follows: 

1. The product of d and N is the mean number of defective units, D, in a nonconforming lot. 

2. The product of L and Pa (and p, if p < 1) is the estimated number of nonconforming lots accepted 

without RBS (LNC-).  

3. The product of LNC- and D estimates the total defective units entering without RBS. 

4. The product of Pa and LI-tot (and p, if p < 1) is the total number of nonconforming lots accepted 

amongst lots that were inspected (LNC-I) under RBS. 

5. The number of nonconforming lots amongst the cleared lots (LNC-C) is equal to LC if p = 1, or is the 

product of LC and p, if p < 1. 

6. The sum of LNC-I and LNC-C is the total number of nonconforming lots accepted or cleared (LNC-tot). 

7. The product of LNC-tot and D is the estimated total number of defective units entering.  
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Appendix F — Equations for Empirical Bayes Method Applied to Beta Distributions 
 

The expression for the distribution of the probability of infestation based on sample data and using the 

beta distribution is (Bolstad and Curran, 2016): 

pinf = Beta(a′, b′)              [F1] 

where a′ and b′ are the posterior or updated parameter estimates. The expressions for a′ and b′ are: 

 a′ = a0 + NNC               [F2] 
 b′ = b0 + Ninsp – NNC              [F3] 

 

where a0 and b0 are prior parameter values, Ninf is the number of nonconforming (infested) lots, and Ninsp 

is the number of inspected lots.  

The equation for the mean (µbeta) of the beta distribution is as follows (Vose, 2000): 

 µbeta = a′ / (a′ + b′)              [F6] 

The equation for a percentile (px) for the beta is as follows: 

 px = Beta.Inv(x, a′i, b′i)            [F7] 

where Beta.Inv is a function for the inverse of the beta distribution in Excel, and x is the percentile being 

evaluated (i.e., x = 0.99 for 99th percentile). 

 

Appendix G — Estimating a Bayesian Prior for a Beta Distribution from Overall Likelihood 
 

Here we give an example of estimating a Bayesian prior using the inspection outcomes data for all 

commodity combinations for which specific distributions will be calculated. The data are calculated 

values of p (fraction nonconforming or action rate) for 451 commodity combinations. A histogram of 

values for these combinations indicates that 0 is the most likely action rate (Figure G1). For that 

histogram, the mean (p̂) was 0.0391, and the variance (σ) was 0.02025. 

Figure G1. (A) Histogram of nonconformity rates for 451 commodity combinations. (B) Prior beta distribution for the 

probability of being nonconforming based on the mean and variance of (A). 
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Estimate a0 and b0 from the histogram data as follows (after Borghers and Wessa, 2017): 

a0 = p̂2 × [((1 − p̂) / σ) – (1 / p̂)]                                [G1] 

b0 = a0 × [(1 / p̂) – 1]                             [G2] 

This gave a0 = 0.033 and b0 = 0.822 (Fig. 1b). This prior (Fig. G1B) indicates that a randomly chosen 

combination is likely to be much closer to 0 than 1.  

1. Calculate Pa-Q for qualifying (standard) inspections, which depends on mean lot size (Nmn), nQ 

(normal sample size), and the expected (mean) number of defective units per lot (D). D is 

estimated as the product of Nmn and d, the proportion of units that are defective. 

2. Calculate UQ, the mean number of lots inspected during qualifying inspection [Eqn. C1]. If U < i, 

then reduced inspection will not often be achieved, and the inspection scheme parameters should 

probably be adjusted (go to Step 3). 

3. Calculate Pa-Red for reduced inspections, as above but using reduced sample size, nRed. 

4. Calculate Urej, the mean number of lots inspected until one is rejected [Eqn. C2].  

5. Divide the total number of incoming lots, Ltot, by the sum of UQ and Urej, which is the mean number 

of lots from the start of qualifying to the first rejection. This estimates how many nonconformities 

will be found over the course of Ltot, or the number of switches back to qualifying inspection from 

reduced inspection (S). 

6. Find the number of lots inspected under qualifying inspection, LQ, as i + i × S, and the total number 

of samples taken in those lots, mQ, as LQ × nQ.  

7. Find the number of lots inspected under reduced inspection, LRed, as Ltot − LRed, and the total 

number of samples taken in those lots, mRed, as LRed × nRed.  

8. The total number of lots inspected in the proposed scheme, LI, is LQ + LRed. Compare that to the 

total number of lots inspected without RBS, which is the product of Ltot and n. 
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Appendix H - Sampling fraction (f) for some values of p, k = 4 and rejection reliability of 95, 80 

and 50%.  

  95%       80%     50%   

p j i f J i F j i f 

0.03 50 300 0.0200000000 239 300 0.0041824530 1,000 300 0.0010000000 

0.03 219 350 0.0045613741 1,098 350 0.0009111113       

0.03 1,000 400 0.0010000000 5,031 400 0.0001987598       

0.03 5,317 450 0.0001880710 22,867 450 0.0000437303       

0.03 22,215 500 0.0000450155             

0.03 100,000 550 0.0000100000             

                    

0.05 1 100 0.7000000000 7 100 0.1522038695 26 100 0.0380641080 

0.05 18 150 0.0553761770 86 150 0.0116628776 344 150 0.0029086301 

0.05 238 200 0.0042021951 1,119 200 0.0008938201 4,453 200 0.0002245923 

0.05 2,849 250 0.0003509463 14,510 250 0.0000689176 58,040 250 0.0000172295 

                    

0.08 1 50 0.9999000000 4 50 0.2845133226 14 50 0.0710919675 

0.08 2 60 0.5786021104 8 60 0.1220658007 33 60 0.0306704032 

0.08 4 70 0.2524595379 19 70 0.0531799248 76 70 0.0130843571 

0.08 9 80 0.1100177222 44 80 0.0229784444 176 80 0.0056920861 

0.08 21 90 0.0473820904 100 90 0.0100000000 404 90 0.0024747045 
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Appendix I- Montecarlo estimate of i pest-free shipments for various values of p1.  

p1 Estimation of i  p1 Estimation of i  p1 
Estimation of 

i 

0.001 9,026  0.037 135   0.073 61 

0.002 4,031  0.038 131   0.074 60 

0.003 2,515  0.039 127   0.075 60 

0.004 1,800  0.04 124   0.076 59 

0.005 1,389  0.041 120   0.077 58 

0.006 1,123  0.042 117   0.078 57 

0.007 939  0.043 114   0.079 56 

0.008 804  0.044 111   0.08 55 

0.009 701  0.045 108   0.081 54 

0.01 620  0.046 105   0.082 54 

0.011 555  0.047 103   0.083 53 

0.012 502  0.048 100   0.084 52 

0.013 457  0.049 98   0.085 51 

0.014 419  0.05 95   0.086 51 

0.015 387  0.051 93   0.087 50 

0.016 359  0.052 91   0.088 49 

0.017 335  0.053 89   0.089 49 

0.018 313  0.054 87   0.09 48 

0.019 294  0.055 85   0.091 48 

0.02 277  0.056 84   0.092 47 

0.021 262  0.057 82   0.093 46 

0.022 248  0.058 80   0.094 46 

0.023 235  0.059 79   0.095 45 

0.024 224  0.06 77   0.096 45 

0.025 214  0.061 76   0.097 44 

0.026 204  0.062 74   0.098 44 

0.027 195  0.063 73   0.099 43 

0.028 187  0.064 72   0.1 43 

0.029 180  0.065 70   0.101 42 

0.03 173  0.066 69   0.102 42 

0.031 166  0.067 68   0.103 41 

0.032 160  0.068 67   0.104 41 

0.033 155  0.069 66   0.105 40 

0.034 149  0.07 65   0.106 40 

0.035 144  0.071 63   0.107 39 

0.036 140  0.072 62   0.108 39 

      0.109 39 

      0.11 38 

 

 


